Magma V2.19-8 Tue Aug 20 2013 23:26:32 on localhost [Seed = 643843844] Type ? for help. Type -D to quit. Loading file "K12n725__sl2_c1.magma" ==TRIANGULATION=BEGINS== % Triangulation K12n725 geometric_solution 5.91674574 oriented_manifold CS_known -0.0000000000000002 1 0 torus 0.000000000000 0.000000000000 7 1 2 3 4 0132 0132 0132 0132 0 0 0 0 0 0 0 0 -1 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 19 0 0 -19 -18 18 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.371203969528 1.485813591345 0 5 4 2 0132 0132 2310 2310 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 -19 0 19 0 0 0 0 0 18 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.264735293101 0.426160869693 1 0 6 3 3201 0132 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 -18 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.371203969528 1.485813591345 6 5 2 0 0213 0213 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.158266616674 0.633491851959 5 1 0 6 0132 3201 0132 0132 0 0 0 0 0 -1 0 1 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 1 -19 -19 0 19 0 0 0 0 0 19 -19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.329130699918 0.726942705993 4 1 3 6 0132 0132 0213 3201 0 0 0 0 0 0 0 0 -1 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 19 0 -1 -18 -19 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.906128790143 0.934273688260 3 5 4 2 0213 2310 0132 0132 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -19 19 0 0 0 0 0 0 18 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.641393497043 0.508112818567 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d, negation = (lambda x:-x): { 's_3_1' : d['1'], 's_3_3' : d['1'], 's_3_2' : d['1'], 's_3_5' : d['1'], 's_3_4' : d['1'], 's_3_0' : negation(d['1']), 's_2_0' : d['1'], 's_2_1' : d['1'], 's_2_2' : d['1'], 's_2_3' : d['1'], 's_2_4' : negation(d['1']), 's_2_5' : d['1'], 's_2_6' : d['1'], 's_1_6' : d['1'], 's_1_5' : negation(d['1']), 's_1_4' : d['1'], 's_1_3' : d['1'], 's_1_2' : d['1'], 's_1_1' : negation(d['1']), 's_1_0' : d['1'], 's_0_6' : d['1'], 's_0_4' : negation(d['1']), 's_0_5' : negation(d['1']), 's_0_2' : d['1'], 's_0_3' : d['1'], 's_0_0' : negation(d['1']), 's_0_1' : negation(d['1']), 'c_1100_6' : d['c_1100_0'], 'c_1100_5' : negation(d['c_0011_6']), 'c_1100_4' : d['c_1100_0'], 's_3_6' : d['1'], 'c_1100_1' : negation(d['c_0011_0']), 'c_1100_0' : d['c_1100_0'], 'c_1100_3' : d['c_1100_0'], 'c_1100_2' : d['c_1100_0'], 'c_0101_6' : d['c_0011_3'], 'c_0101_5' : d['c_0011_3'], 'c_0101_4' : d['c_0101_1'], 'c_0101_3' : d['c_0011_6'], 'c_0101_2' : negation(d['c_0101_0']), 'c_0101_1' : d['c_0101_1'], 'c_0101_0' : d['c_0101_0'], 'c_0011_5' : d['c_0011_0'], 'c_0011_4' : negation(d['c_0011_0']), 'c_0011_6' : d['c_0011_6'], 'c_0011_1' : negation(d['c_0011_0']), 'c_0011_0' : d['c_0011_0'], 'c_0011_3' : d['c_0011_3'], 'c_0011_2' : negation(d['c_0011_0']), 'c_1001_5' : negation(d['c_0011_6']), 'c_1001_4' : negation(d['c_0101_1']), 'c_1001_6' : negation(d['c_1001_1']), 'c_1001_1' : d['c_1001_1'], 'c_1001_0' : negation(d['c_0011_6']), 'c_1001_3' : negation(d['c_0011_6']), 'c_1001_2' : negation(d['c_0101_1']), 'c_0110_1' : d['c_0101_0'], 'c_0110_0' : d['c_0101_1'], 'c_0110_3' : d['c_0101_0'], 'c_0110_2' : d['c_0011_6'], 'c_0110_5' : d['c_0101_1'], 'c_0110_4' : d['c_0011_3'], 'c_0110_6' : negation(d['c_0101_0']), 'c_1010_6' : negation(d['c_0101_1']), 'c_1010_5' : d['c_1001_1'], 'c_1010_4' : negation(d['c_1001_1']), 'c_1010_3' : negation(d['c_0011_6']), 'c_1010_2' : negation(d['c_0011_6']), 'c_1010_1' : negation(d['c_0011_6']), 'c_1010_0' : negation(d['c_0101_1'])})} PY=EVAL=SECTION=ENDS=HERE PRIMARY=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 8 over Rational Field Order: Lexicographical Variables: t, c_0011_0, c_0011_3, c_0011_6, c_0101_0, c_0101_1, c_1001_1, c_1100_0 Inhomogeneous, Dimension 0, Radical, Prime Size of variety over algebraically closed field: 4 Groebner basis: [ t - 5/3*c_1100_0^3 + 32/3*c_1100_0^2 - 71/6*c_1100_0 + 11/3, c_0011_0 - 1, c_0011_3 + 1/2*c_1100_0^3 - 5/2*c_1100_0^2 + 2, c_0011_6 + 1/4*c_1100_0^3 - 3/2*c_1100_0^2 + 1/2*c_1100_0 + 1, c_0101_0 + 1/4*c_1100_0^3 - c_1100_0^2 - 1/2*c_1100_0, c_0101_1 + 1/4*c_1100_0^3 - 3/2*c_1100_0^2 + 1/2*c_1100_0 + 1, c_1001_1 - 1, c_1100_0^4 - 6*c_1100_0^3 + 4*c_1100_0^2 + 4*c_1100_0 - 4 ] ] PRIMARY=DECOMPOSITION=ENDS=HERE CPUTIME : 0.010 Total time: 0.210 seconds, Total memory usage: 32.09MB