Magma V2.22-2 Sun Aug 9 2020 22:18:46 on zickert [Seed = 377321414] Type ? for help. Type -D to quit. Loading file "ptolemy_data_ht/09_tetrahedra/K14n22180__sl2_c1.magma" ==TRIANGULATION=BEGINS== % Triangulation K14n22180 degenerate_solution 3.66397660 oriented_manifold CS_unknown 1 0 torus 0.000000000000 0.000000000000 9 1 2 3 2 0132 0132 0132 1023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36979633516.983703613281 82867016893.038177490234 0 4 6 5 0132 0132 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.999999812172 2.000001642535 5 0 3 0 0321 0132 3201 1023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000001806822 0.000002784852 2 4 5 0 2310 0213 0213 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000001806824 0.000002784849 5 1 3 7 3012 0132 0213 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.199998305444 0.399999691954 2 3 1 4 0321 0213 0132 1230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000000658901 0.000002540350 7 8 8 1 3012 0132 1302 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 2 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.000000538143 0.500000537255 8 8 4 6 2103 1302 0132 1230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000001135496 1.999999374263 6 6 7 7 2031 0132 2103 2031 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 3 -2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000002152568 1.999997850978 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d: { 'c_0011_0' : d['c_0011_0'], 'c_0011_1' : - d['c_0011_0'], 'c_0011_2' : - d['c_0011_0'], 'c_0011_4' : d['c_0011_0'], 'c_0110_5' : d['c_0011_0'], 'c_0101_2' : - d['c_0101_0'], 'c_0101_0' : d['c_0101_0'], 'c_0110_1' : d['c_0101_0'], 'c_0110_3' : d['c_0101_0'], 'c_0101_5' : d['c_0101_0'], 'c_0110_0' : d['c_0101_1'], 'c_0101_1' : d['c_0101_1'], 'c_1001_0' : d['c_0101_1'], 'c_1010_2' : d['c_0101_1'], 'c_1010_3' : d['c_0101_1'], 'c_0110_6' : d['c_0101_1'], 'c_1100_4' : d['c_0101_1'], 'c_1100_7' : d['c_0101_1'], 'c_1010_0' : - d['c_0011_5'], 'c_1001_2' : - d['c_0011_5'], 'c_0110_2' : - d['c_0011_5'], 'c_0011_5' : d['c_0011_5'], 'c_0101_3' : d['c_0011_5'], 'c_1100_0' : d['c_0011_3'], 'c_1100_3' : d['c_0011_3'], 'c_1100_2' : - d['c_0011_3'], 'c_0011_3' : d['c_0011_3'], 'c_0101_4' : d['c_0011_3'], 'c_1010_5' : d['c_0011_3'], 'c_0011_7' : d['c_0011_7'], 'c_1001_1' : d['c_0011_7'], 'c_1010_4' : d['c_0011_7'], 'c_1010_6' : d['c_0011_7'], 'c_1001_7' : d['c_0011_7'], 'c_1001_8' : d['c_0011_7'], 'c_1001_6' : d['c_0011_7'], 'c_1010_8' : d['c_0011_7'], 'c_0110_8' : d['c_0011_7'], 'c_1001_3' : d['c_1001_3'], 'c_1010_1' : d['c_1001_3'], 'c_1001_4' : d['c_1001_3'], 'c_1001_5' : d['c_1001_3'], 'c_0110_4' : d['c_0101_7'], 'c_1100_1' : d['c_0101_7'], 'c_1100_6' : d['c_0101_7'], 'c_1100_5' : d['c_0101_7'], 'c_0101_7' : d['c_0101_7'], 'c_0101_8' : d['c_0101_7'], 'c_0101_6' : d['c_0011_6'], 'c_1010_7' : d['c_0011_6'], 'c_0011_6' : d['c_0011_6'], 'c_0110_7' : d['c_0011_6'], 'c_0011_8' : - d['c_0011_6'], 'c_1100_8' : - d['c_0011_6'], 's_1_7' : d['1'], 's_0_7' : - d['1'], 's_2_6' : d['1'], 's_1_6' : - d['1'], 's_0_6' : d['1'], 's_3_4' : - d['1'], 's_0_4' : d['1'], 's_2_3' : d['1'], 's_1_3' : d['1'], 's_2_2' : d['1'], 's_0_2' : d['1'], 's_3_1' : d['1'], 's_2_1' : - d['1'], 's_1_1' : - d['1'], 's_3_0' : d['1'], 's_2_0' : d['1'], 's_1_0' : d['1'], 's_0_0' : d['1'], 's_0_1' : d['1'], 's_1_2' : d['1'], 's_3_3' : d['1'], 's_3_2' : d['1'], 's_1_4' : - d['1'], 's_3_6' : - d['1'], 's_2_5' : d['1'], 's_0_5' : d['1'], 's_0_3' : d['1'], 's_2_4' : d['1'], 's_1_5' : d['1'], 's_3_5' : d['1'], 's_2_7' : - d['1'], 's_3_7' : d['1'], 's_1_8' : - d['1'], 's_0_8' : d['1'], 's_2_8' : - d['1'], 's_3_8' : d['1']})} PY=EVAL=SECTION=ENDS=HERE Status: Computing Groebner basis... Time: 0.050 Status: Saturating ideal ( 1 / 9 )... Time: 0.040 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 2 / 9 )... Time: 0.040 Status: Recomputing Groebner basis... Time: 0.030 Status: Saturating ideal ( 3 / 9 )... Time: 0.040 Status: Recomputing Groebner basis... Time: 0.030 Status: Saturating ideal ( 4 / 9 )... Time: 0.050 Status: Recomputing Groebner basis... Time: 0.040 Status: Saturating ideal ( 5 / 9 )... Time: 0.030 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 6 / 9 )... Time: 0.040 Status: Recomputing Groebner basis... Time: 0.020 Status: Saturating ideal ( 7 / 9 )... Time: 0.030 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 8 / 9 )... Time: 0.040 Status: Recomputing Groebner basis... Time: 0.020 Status: Saturating ideal ( 9 / 9 )... Time: 0.020 Status: Recomputing Groebner basis... Time: 0.020 Status: Dimension of ideal: 1 [ 9 ] Status: Computing RadicalDecomposition Time: 0.150 Status: Number of components: 2 DECOMPOSITION=TYPE: RadicalDecomposition Status: Changing to term order lex ... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Confirming is prime... Time: 0.010 IDEAL=DECOMPOSITION=TIME: 0.920 IDEAL=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 9 over Rational Field Order: Graded Reverse Lexicographical Variables: c_0011_0, c_0011_3, c_0011_5, c_0011_6, c_0011_7, c_0101_0, c_0101_1, c_0101_7, c_1001_3 Inhomogeneous, Dimension 1, Radical, Prime Groebner basis: [ c_0101_1^2*c_1001_3^2 - c_0101_7^2*c_1001_3^2 + c_0101_0*c_1001_3^3 - c_0101_1*c_1001_3^3 + 7*c_0101_1^2*c_1001_3 - 2*c_0011_7*c_0101_7*c_1001_3 - c_0101_0*c_0101_7*c_1001_3 - 6*c_0101_7^2*c_1001_3 + 5*c_0011_3*c_1001_3^2 - c_0011_6*c_1001_3^2 - c_0011_7*c_1001_3^2 + 7*c_0101_0*c_1001_3^2 - 6*c_0101_1*c_1001_3^2 - 4*c_0101_7*c_1001_3^2 - 3*c_1001_3^3 - c_0011_6*c_0101_0 + 7*c_0101_1^2 - c_0011_6*c_0101_7 - 2*c_0011_7*c_0101_7 - c_0101_0*c_0101_7 - c_0101_1*c_0101_7 - 6*c_0101_7^2 + 11*c_0011_3*c_1001_3 - 2*c_0011_7*c_1001_3 + 9*c_0101_0*c_1001_3 - 7*c_0101_1*c_1001_3 - 7*c_0101_7*c_1001_3 - 9*c_1001_3^2 + 5*c_0011_3 + c_0011_6 + 3*c_0101_0 - 2*c_0101_1 - 3*c_0101_7 - 7*c_1001_3 - 1, c_0011_6*c_0101_7*c_1001_3^2 + c_0101_1*c_0101_7*c_1001_3^2 - c_0101_7^2*c_1001_3^2 - c_0011_3*c_1001_3^3 + c_0011_7*c_1001_3^3 + 2*c_0101_0*c_1001_3^3 - 2*c_0101_1*c_1001_3^3 + c_0101_7*c_1001_3^3 + c_1001_3^4 + 16*c_0101_1^2*c_1001_3 - 2*c_0011_6*c_0101_7*c_1001_3 - 4*c_0011_7*c_0101_7*c_1001_3 - c_0101_0*c_0101_7*c_1001_3 - 14*c_0101_7^2*c_1001_3 + 10*c_0011_3*c_1001_3^2 + c_0011_6*c_1001_3^2 - 3*c_0011_7*c_1001_3^2 + 14*c_0101_0*c_1001_3^2 - 12*c_0101_1*c_1001_3^2 - 9*c_0101_7*c_1001_3^2 - 6*c_1001_3^3 + 2*c_0011_6*c_0101_0 + 12*c_0101_1^2 - c_0011_6*c_0101_7 - 4*c_0011_7*c_0101_7 - c_0101_0*c_0101_7 - c_0101_1*c_0101_7 - 11*c_0101_7^2 + 22*c_0011_3*c_1001_3 - c_0011_6*c_1001_3 - 4*c_0011_7*c_1001_3 + 18*c_0101_0*c_1001_3 - 15*c_0101_1*c_1001_3 - 18*c_0101_7*c_1001_3 - 22*c_1001_3^2 + 10*c_0011_3 - 2*c_0011_6 - 2*c_0011_7 + 5*c_0101_0 - 7*c_0101_1 - 8*c_0101_7 - 14*c_1001_3 - 1, c_0011_7*c_0101_7*c_1001_3^2 - c_0011_3*c_1001_3^3 + c_0101_7*c_1001_3^3 + 13*c_0101_1^2*c_1001_3 + c_0011_6*c_0101_7*c_1001_3 - 4*c_0011_7*c_0101_7*c_1001_3 - 2*c_0101_0*c_0101_7*c_1001_3 - 11*c_0101_7^2*c_1001_3 + 8*c_0011_3*c_1001_3^2 - 3*c_0011_6*c_1001_3^2 - c_0011_7*c_1001_3^2 + 12*c_0101_0*c_1001_3^2 - 11*c_0101_1*c_1001_3^2 - 6*c_0101_7*c_1001_3^2 - 4*c_1001_3^3 - 4*c_0011_6*c_0101_0 + 18*c_0101_1^2 - 3*c_0011_6*c_0101_7 - 5*c_0011_7*c_0101_7 - 3*c_0101_0*c_0101_7 - 3*c_0101_1*c_0101_7 - 15*c_0101_7^2 + 24*c_0011_3*c_1001_3 - 5*c_0011_7*c_1001_3 + 20*c_0101_0*c_1001_3 - 15*c_0101_1*c_1001_3 - 14*c_0101_7*c_1001_3 - 16*c_1001_3^2 + 12*c_0011_3 + 4*c_0011_6 + c_0011_7 + 8*c_0101_0 - 4*c_0101_1 - 6*c_0101_7 - 16*c_1001_3 - 3, c_0101_1^3 + 2*c_0101_1^2*c_1001_3 - c_0011_7*c_0101_7*c_1001_3 + 3*c_0101_0*c_0101_7*c_1001_3 - 2*c_0101_1*c_0101_7*c_1001_3 - 3*c_0101_7^2*c_1001_3 + c_0011_6*c_1001_3^2 + c_0011_7*c_1001_3^2 - 3*c_0101_1*c_1001_3^2 - c_0011_6*c_0101_0 + 3*c_0101_1^2 - c_0011_6*c_0101_7 - 2*c_0011_7*c_0101_7 + 3*c_0101_0*c_0101_7 - 2*c_0101_1*c_0101_7 - 4*c_0101_7^2 - c_0011_7*c_1001_3 - 2*c_0101_1*c_1001_3 - 4*c_0101_7*c_1001_3 - c_0011_6 - 2*c_0011_7 + c_0101_1 - 3*c_0101_7, c_0011_6*c_0101_0*c_0101_7 - 3*c_0101_1^2*c_1001_3 + c_0011_6*c_0101_7*c_1001_3 + c_0011_7*c_0101_7*c_1001_3 + c_0101_1*c_0101_7*c_1001_3 + 2*c_0101_7^2*c_1001_3 - c_0011_6*c_0101_7 - c_0101_1*c_0101_7, c_0101_1^2*c_0101_7 + 3*c_0101_1^2*c_1001_3 - c_0011_6*c_0101_7*c_1001_3 - 2*c_0011_7*c_0101_7*c_1001_3 + 3*c_0101_0*c_0101_7*c_1001_3 - 2*c_0101_1*c_0101_7*c_1001_3 - 4*c_0101_7^2*c_1001_3 + 2*c_0011_6*c_1001_3^2 + c_0011_7*c_1001_3^2 - 3*c_0101_1*c_1001_3^2 - c_0101_7*c_1001_3^2 + c_0011_6*c_0101_0 + 3*c_0101_1^2 - c_0011_7*c_0101_7 + 3*c_0101_0*c_0101_7 - 2*c_0101_1*c_0101_7 - 3*c_0101_7^2 - c_0011_6*c_1001_3 - 2*c_0011_7*c_1001_3 - 5*c_0101_1*c_1001_3 - 5*c_0101_7*c_1001_3 - 2*c_0011_6 - 2*c_0011_7 - c_0101_1 - 4*c_0101_7, c_0011_6*c_0101_7^2 - c_0011_6*c_0101_7*c_1001_3 + c_0101_0*c_0101_7*c_1001_3 - c_0101_1*c_0101_7*c_1001_3 + c_0011_6*c_1001_3^2 + c_0101_1*c_1001_3^2 + c_0011_6*c_0101_0 - 3*c_0101_1^2 + 2*c_0011_6*c_0101_7 + c_0011_7*c_0101_7 + c_0101_0*c_0101_7 + c_0101_1*c_0101_7 + 2*c_0101_7^2 + c_0011_6*c_1001_3 + c_0011_7*c_1001_3 + 2*c_0101_7*c_1001_3 - c_0011_6 - c_0011_7 + c_0101_1 - c_0101_7, c_0011_7*c_0101_7^2 - c_0101_0*c_0101_7*c_1001_3 + c_0101_7^2*c_1001_3 - c_0011_6*c_1001_3^2 - c_0011_7*c_1001_3^2 + c_0101_1*c_1001_3^2 - c_0101_7*c_1001_3^2 + c_0011_6*c_0101_0 + c_0011_7*c_0101_7 - c_0101_0*c_0101_7 + c_0101_1*c_0101_7 + c_0011_6*c_1001_3 + 3*c_0011_7*c_1001_3 - c_0101_1*c_1001_3 + 2*c_0101_7*c_1001_3 - c_0011_6 - c_0101_1, c_0101_0*c_0101_7^2 + 3*c_0101_1^2*c_1001_3 - c_0011_7*c_0101_7*c_1001_3 - 2*c_0101_1*c_0101_7*c_1001_3 - 3*c_0101_7^2*c_1001_3 + 3*c_0101_1^2 - c_0011_6*c_0101_7 - 2*c_0011_7*c_0101_7 - c_0101_1*c_0101_7 - 4*c_0101_7^2, c_0101_1*c_0101_7^2 + 3*c_0101_1^2*c_1001_3 - c_0011_7*c_0101_7*c_1001_3 + 2*c_0101_0*c_0101_7*c_1001_3 - 2*c_0101_1*c_0101_7*c_1001_3 - 3*c_0101_7^2*c_1001_3 - 3*c_0101_1*c_1001_3^2 - c_0101_7*c_1001_3^2 - c_0011_6*c_0101_0 + 3*c_0101_1^2 - c_0011_6*c_0101_7 - 2*c_0011_7*c_0101_7 + 2*c_0101_0*c_0101_7 - c_0101_1*c_0101_7 - 4*c_0101_7^2 + c_0011_6*c_1001_3 - 3*c_0101_1*c_1001_3 - 4*c_0101_7*c_1001_3 - c_0011_6 - 2*c_0011_7 - 3*c_0101_7, c_0101_7^3 + 3*c_0101_1^2*c_1001_3 - c_0011_6*c_0101_7*c_1001_3 - 2*c_0011_7*c_0101_7*c_1001_3 + 2*c_0101_0*c_0101_7*c_1001_3 - c_0101_1*c_0101_7*c_1001_3 - 4*c_0101_7^2*c_1001_3 + 2*c_0011_6*c_1001_3^2 + c_0011_7*c_1001_3^2 - 3*c_0101_1*c_1001_3^2 - c_0101_7*c_1001_3^2 + c_0011_6*c_0101_0 + 3*c_0101_1^2 - c_0011_7*c_0101_7 + 2*c_0101_0*c_0101_7 - 2*c_0101_1*c_0101_7 - 2*c_0101_7^2 - 2*c_0011_6*c_1001_3 - 4*c_0011_7*c_1001_3 - 5*c_0101_1*c_1001_3 - 6*c_0101_7*c_1001_3 - c_0011_6 - c_0011_7 - 2*c_0101_1 - 3*c_0101_7, c_0011_6*c_0101_0*c_1001_3 + c_0101_0*c_0101_7*c_1001_3 + c_0011_6*c_1001_3^2 - c_0101_1*c_1001_3^2 - c_0101_7*c_1001_3^2 + c_0011_6*c_0101_0 - c_0011_6*c_1001_3 - c_0011_7*c_1001_3 - c_0101_1*c_1001_3 - 2*c_0101_7*c_1001_3 - c_0011_6 - c_0101_1, c_0011_3^2 + c_0101_1^2 - c_0101_0*c_0101_7 - c_0011_6*c_1001_3 - c_0011_7*c_1001_3 + c_0101_0*c_1001_3 - c_0101_7*c_1001_3 + c_0011_6 + c_0011_7 - c_0101_1 + c_0101_7, c_0011_3*c_0011_6 + c_0011_6*c_0101_0 + c_0101_0*c_0101_7 - 2*c_0101_1*c_1001_3 - c_0101_7*c_1001_3 - c_0011_6 - c_0011_7 - c_0101_1 - 2*c_0101_7, c_0011_6^2 + 2*c_0101_1^2 - c_0011_6*c_0101_7 - c_0101_1*c_0101_7 - c_0101_7^2, c_0011_3*c_0011_7 + c_0101_7*c_1001_3 + c_0101_1, c_0011_6*c_0011_7 - c_0101_1^2 + c_0011_6*c_0101_7 + c_0101_7^2, c_0011_7^2 + 2*c_0101_1^2 - c_0011_6*c_0101_7 + c_0011_7*c_0101_7 - c_0101_1*c_0101_7 - c_0101_7^2, c_0011_3*c_0101_0 - c_0101_0*c_0101_7 + c_0101_1*c_0101_7 - c_1001_3, c_0011_7*c_0101_0 + c_0101_1*c_1001_3 + c_0101_7, c_0101_0^2 + c_0101_1^2 - c_0101_0*c_0101_7 - c_0011_6*c_1001_3 - c_0011_7*c_1001_3 - c_0101_7*c_1001_3 + c_0011_3 + c_0011_6 + c_0011_7 - c_0101_1 + c_0101_7, c_0011_3*c_0101_1 - c_0101_0*c_0101_7 - c_0101_1, c_0011_6*c_0101_1 - 2*c_0101_1^2 + c_0011_6*c_0101_7 + c_0011_7*c_0101_7 + c_0101_1*c_0101_7 + 2*c_0101_7^2, c_0011_7*c_0101_1 + c_0101_1^2 - c_0101_7^2, c_0101_0*c_0101_1 - c_0101_0*c_0101_7 - c_0011_6*c_1001_3 - c_0011_7*c_1001_3 - c_0101_7*c_1001_3 + c_0011_6 + c_0011_7 - c_0101_1 + c_0101_7, c_0011_3*c_0101_7 - c_0101_0*c_0101_7 - c_0011_6*c_1001_3 - c_0011_7*c_1001_3 + c_0101_1*c_1001_3 - c_0101_7*c_1001_3 + c_0011_6 + c_0011_7 - c_0101_1 + c_0101_7, c_0011_0 - 1, c_0011_5 - c_0101_0 + c_0101_1 ], Ideal of Polynomial ring of rank 9 over Rational Field Order: Lexicographical Variables: c_0011_0, c_0011_3, c_0011_5, c_0011_6, c_0011_7, c_0101_0, c_0101_1, c_0101_7, c_1001_3 Inhomogeneous, Dimension 0, Radical, Prime Groebner basis: [ c_0011_0 - 1, c_0011_3 + 1, c_0011_5 + c_1001_3, c_0011_6 + 9*c_1001_3^5 + 9*c_1001_3^4 - 13*c_1001_3^3 - 18*c_1001_3^2 + 8*c_1001_3 + 6, c_0011_7 - 3*c_1001_3^5 - 5*c_1001_3^4 + 2*c_1001_3^3 + 8*c_1001_3^2 - 3, c_0101_0 - 3*c_1001_3^5 - 5*c_1001_3^4 + 2*c_1001_3^3 + 8*c_1001_3^2 - 3, c_0101_1 + c_1001_3, c_0101_7 + 9*c_1001_3^5 + 12*c_1001_3^4 - 11*c_1001_3^3 - 22*c_1001_3^2 + 5*c_1001_3 + 8, c_1001_3^6 + 5/3*c_1001_3^5 - 2/3*c_1001_3^4 - 8/3*c_1001_3^3 - 1/3*c_1001_3^2 + c_1001_3 + 1/3 ] ] IDEAL=DECOMPOSITION=ENDS=HERE FREE=VARIABLES=IN=COMPONENTS=BEGINS=HERE [ [ "c_1001_3" ], [] ] FREE=VARIABLES=IN=COMPONENTS=ENDS=HERE Status: Finding witnesses for non-zero dimensional ideals... Status: Computing Groebner basis... Time: 0.010 Status: Saturating ideal ( 1 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 2 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 3 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 4 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 5 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 6 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 7 / 9 )... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 8 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 9 / 9 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Dimension of ideal: 0 [] Status: Testing witness [ 1 ] ... Time: 0.000 Status: Changing to term order lex ... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Confirming is prime... Time: 0.040 ==WITNESSES=FOR=COMPONENTS=BEGINS== ==WITNESSES=BEGINS== ==WITNESS=BEGINS== Ideal of Polynomial ring of rank 9 over Rational Field Order: Lexicographical Variables: c_0011_0, c_0011_3, c_0011_5, c_0011_6, c_0011_7, c_0101_0, c_0101_1, c_0101_7, c_1001_3 Inhomogeneous, Dimension 0, Radical, Prime Groebner basis: [ c_0011_0 - 1, c_0011_3 + 405409582/765688209973*c_0101_7^9 + 793615217/765688209973*c_0101_7^8 + 2412978411/765688209973*c_0101_7^7 - 22281506747/765688209973*c_0101_7^6 - 20300875444/765688209973*c_0101_7^5 - 137128362557/765688209973*c_0101_7^4 - 88629894355/765688209973*c_0101_7^3 - 346176444338/765688209973*c_0101_7^2 - 148899640071/765688209973*c_0101_7 - 567150932332/765688209973, c_0011_5 - 1119553009/2297064629919*c_0101_7^9 + 6397935769/2297064629919*c_0101_7^8 + 18281430346/2297064629919*c_0101_7^7 + 117028155376/2297064629919*c_0101_7^6 - 128059972095/765688209973*c_0101_7^5 - 191441643308/765688209973*c_0101_7^4 - 2615819331023/2297064629919*c_0101_7^3 - 2409748396625/2297064629919*c_0101_7^2 - 4198823671193/2297064629919*c_0101_7 - 647264524468/765688209973, c_0011_6 - 28065360412/2297064629919*c_0101_7^9 + 38121010309/2297064629919*c_0101_7^8 + 117828602626/2297064629919*c_0101_7^7 + 2002137615265/2297064629919*c_0101_7^6 - 1177089046748/765688209973*c_0101_7^5 - 853323679767/765688209973*c_0101_7^4 - 16583493524810/2297064629919*c_0101_7^3 - 9235297751267/2297064629919*c_0101_7^2 - 12679746107099/2297064629919*c_0101_7 - 446828726307/765688209973, c_0011_7 - 2552179696/2297064629919*c_0101_7^9 + 4991735590/2297064629919*c_0101_7^8 + 7183479508/2297064629919*c_0101_7^7 + 227781377470/2297064629919*c_0101_7^6 - 113257468924/765688209973*c_0101_7^5 + 35014734521/765688209973*c_0101_7^4 - 4581777254978/2297064629919*c_0101_7^3 - 2669648492975/2297064629919*c_0101_7^2 - 3347230648310/2297064629919*c_0101_7 - 165223162047/765688209973, c_0101_0 + 405409582/765688209973*c_0101_7^9 + 793615217/765688209973*c_0101_7^8 + 2412978411/765688209973*c_0101_7^7 - 22281506747/765688209973*c_0101_7^6 - 20300875444/765688209973*c_0101_7^5 - 137128362557/765688209973*c_0101_7^4 - 88629894355/765688209973*c_0101_7^3 - 346176444338/765688209973*c_0101_7^2 - 148899640071/765688209973*c_0101_7 - 567150932332/765688209973, c_0101_1 + 2335781755/2297064629919*c_0101_7^9 - 4017090118/2297064629919*c_0101_7^8 - 11042495113/2297064629919*c_0101_7^7 - 183872675617/2297064629919*c_0101_7^6 + 107759096651/765688209973*c_0101_7^5 + 54313280751/765688209973*c_0101_7^4 + 2349929647958/2297064629919*c_0101_7^3 + 1371219063611/2297064629919*c_0101_7^2 + 3752124750980/2297064629919*c_0101_7 + 80113592136/765688209973, c_0101_7^10 - c_0101_7^9 - 4*c_0101_7^8 - 76*c_0101_7^7 + 93*c_0101_7^6 + 81*c_0101_7^5 + 839*c_0101_7^4 + 755*c_0101_7^3 + 1340*c_0101_7^2 + 606*c_0101_7 + 549, c_1001_3 - 1 ] ==WITNESS=ENDS== ==WITNESSES=ENDS== ==WITNESSES=BEGINS== ==WITNESSES=ENDS== ==WITNESSES=FOR=COMPONENTS=ENDS== ==GENUSES=FOR=COMPONENTS=BEGINS== ==GENUS=FOR=COMPONENT=BEGINS== 0 ==GENUS=FOR=COMPONENT=ENDS== ==GENUS=FOR=COMPONENT=BEGINS== ==GENUS=FOR=COMPONENT=ENDS== ==GENUSES=FOR=COMPONENTS=ENDS== Total time: 27.969 seconds, Total memory usage: 32.09MB