Magma V2.22-2 Sun Aug 9 2020 22:18:52 on zickert [Seed = 4204251084] Type ? for help. Type -D to quit. Loading file "ptolemy_data_ht/10_tetrahedra/K14n26039__sl2_c1.magma" ==TRIANGULATION=BEGINS== % Triangulation K14n26039 degenerate_solution 3.66393902 oriented_manifold CS_unknown 1 0 torus 0.000000000000 0.000000000000 10 1 2 3 4 0132 0132 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000000073562 0.125000139246 0 5 2 5 0132 0132 1230 0213 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 -1 -2 0 0 0 0 0 -1 0 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000001111702 1.999997581007 5 0 5 1 0132 0132 3120 3012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.000001764748 2.000001144837 4 6 7 0 1302 0132 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.999999078197 1.999998747535 8 3 0 7 0132 2031 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.999997737382 1.999998243729 2 1 2 1 0132 0132 3120 0213 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 1 2 0 0 1 -1 -1 1 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000001111702 1.999997581007 7 3 8 9 1230 0132 3120 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -181697.953009265300 527281.062820707448 9 6 4 3 3120 3012 0132 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000000306395 0.000002265069 4 9 6 9 0132 3012 3120 0321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245013784054.355895996094 191622397371.104553222656 8 8 6 7 1230 0321 0132 3120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000000584164 0.000001695223 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d: { 'c_0011_0' : d['c_0011_0'], 'c_0011_1' : - d['c_0011_0'], 'c_0011_2' : - d['c_0011_0'], 'c_0011_5' : d['c_0011_0'], 'c_1010_0' : - d['c_0101_0'], 'c_1001_2' : - d['c_0101_0'], 'c_1001_4' : - d['c_0101_0'], 'c_0101_2' : - d['c_0101_0'], 'c_0101_0' : d['c_0101_0'], 'c_0110_1' : d['c_0101_0'], 'c_0110_3' : d['c_0101_0'], 'c_0110_5' : - d['c_0101_0'], 'c_1010_1' : d['c_0101_0'], 'c_1001_5' : d['c_0101_0'], 'c_1100_5' : d['c_0101_0'], 'c_0110_0' : - d['c_0011_9'], 'c_0101_1' : - d['c_0011_9'], 'c_0101_4' : - d['c_0011_9'], 'c_1001_0' : d['c_0011_9'], 'c_1010_2' : d['c_0011_9'], 'c_1010_3' : d['c_0011_9'], 'c_1001_6' : d['c_0011_9'], 'c_0110_8' : - d['c_0011_9'], 'c_1001_8' : - d['c_0011_9'], 'c_0011_9' : d['c_0011_9'], 'c_1100_0' : d['c_1100_0'], 'c_1100_3' : d['c_1100_0'], 'c_1100_4' : d['c_1100_0'], 'c_1100_7' : d['c_1100_0'], 'c_1100_1' : d['c_0101_5'], 'c_0110_2' : d['c_0101_5'], 'c_1001_1' : d['c_0101_5'], 'c_1010_5' : d['c_0101_5'], 'c_1100_2' : - d['c_0101_5'], 'c_0101_5' : d['c_0101_5'], 'c_0011_3' : d['c_0011_3'], 'c_1010_4' : d['c_0011_3'], 'c_0011_6' : - d['c_0011_3'], 'c_1001_7' : d['c_0011_3'], 'c_0101_3' : - d['c_0011_4'], 'c_0011_4' : d['c_0011_4'], 'c_0110_7' : - d['c_0011_4'], 'c_0011_8' : - d['c_0011_4'], 'c_0110_9' : - d['c_0011_4'], 'c_0101_6' : d['c_0101_6'], 'c_1001_3' : - d['c_0101_6'], 'c_1010_6' : - d['c_0101_6'], 'c_1010_7' : - d['c_0101_6'], 'c_1100_8' : - d['c_0101_6'], 'c_1001_9' : - d['c_0101_6'], 'c_1100_6' : - d['c_0101_7'], 'c_0110_4' : d['c_0101_7'], 'c_0101_8' : d['c_0101_7'], 'c_0101_7' : d['c_0101_7'], 'c_1100_9' : - d['c_0101_7'], 'c_1010_8' : - d['c_0011_7'], 'c_0110_6' : d['c_0011_7'], 'c_0011_7' : d['c_0011_7'], 'c_0101_9' : d['c_0011_7'], 'c_1010_9' : - d['c_0011_7'], 's_3_8' : d['1'], 's_1_8' : d['1'], 's_0_7' : d['1'], 's_3_6' : d['1'], 's_2_6' : d['1'], 's_0_6' : d['1'], 's_3_4' : d['1'], 's_0_4' : d['1'], 's_2_3' : d['1'], 's_1_3' : d['1'], 's_0_3' : d['1'], 's_2_2' : - d['1'], 's_0_2' : d['1'], 's_3_1' : d['1'], 's_2_1' : d['1'], 's_1_1' : - d['1'], 's_3_0' : d['1'], 's_2_0' : d['1'], 's_1_0' : - d['1'], 's_0_0' : - d['1'], 's_0_1' : - d['1'], 's_1_2' : - d['1'], 's_3_3' : d['1'], 's_2_4' : d['1'], 's_1_5' : - d['1'], 's_3_2' : d['1'], 's_3_5' : d['1'], 's_0_5' : d['1'], 's_2_5' : - d['1'], 's_1_4' : d['1'], 's_1_6' : d['1'], 's_3_7' : d['1'], 's_0_8' : d['1'], 's_2_7' : d['1'], 's_1_7' : d['1'], 's_2_8' : d['1'], 's_2_9' : d['1'], 's_3_9' : d['1'], 's_0_9' : d['1'], 's_1_9' : d['1']})} PY=EVAL=SECTION=ENDS=HERE Status: Computing Groebner basis... Time: 0.380 Status: Saturating ideal ( 1 / 10 )... Time: 0.320 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 2 / 10 )... Time: 0.270 Status: Recomputing Groebner basis... Time: 0.310 Status: Saturating ideal ( 3 / 10 )... Time: 0.140 Status: Recomputing Groebner basis... Time: 0.290 Status: Saturating ideal ( 4 / 10 )... Time: 0.130 Status: Recomputing Groebner basis... Time: 0.210 Status: Saturating ideal ( 5 / 10 )... Time: 0.150 Status: Recomputing Groebner basis... Time: 0.380 Status: Saturating ideal ( 6 / 10 )... Time: 0.160 Status: Recomputing Groebner basis... Time: 0.130 Status: Saturating ideal ( 7 / 10 )... Time: 0.080 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 8 / 10 )... Time: 0.070 Status: Recomputing Groebner basis... Time: 0.110 Status: Saturating ideal ( 9 / 10 )... Time: 0.060 Status: Recomputing Groebner basis... Time: 0.070 Status: Saturating ideal ( 10 / 10 )... Time: 0.060 Status: Recomputing Groebner basis... Time: 0.050 Status: Dimension of ideal: 1 [ 9 ] Status: Computing RadicalDecomposition Time: 0.550 Status: Number of components: 2 DECOMPOSITION=TYPE: RadicalDecomposition Status: Changing to term order lex ... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Confirming is prime... Time: 0.010 IDEAL=DECOMPOSITION=TIME: 4.160 IDEAL=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 10 over Rational Field Order: Graded Reverse Lexicographical Variables: c_0011_0, c_0011_3, c_0011_4, c_0011_7, c_0011_9, c_0101_0, c_0101_5, c_0101_6, c_0101_7, c_1100_0 Inhomogeneous, Dimension 1, Radical, Prime Groebner basis: [ c_0011_4^5 + 3*c_0011_4^4*c_0101_7 + c_0011_3^3*c_0101_6*c_0101_7 - 3*c_0011_3^3*c_0101_7^2 + 5*c_0011_4^3*c_0101_7^2 - 5*c_0011_3^2*c_0101_6*c_0101_7^2 + 7*c_0011_3^2*c_0101_7^3 + 7*c_0011_4^2*c_0101_7^3 + 9*c_0011_3*c_0101_6*c_0101_7^3 - 11*c_0011_3*c_0101_7^4 + 9*c_0011_4*c_0101_7^4 - 13*c_0101_6*c_0101_7^4 + 11*c_0101_7^5 + 5*c_0011_4^4 - 64/21*c_0011_3^3*c_0101_6 + 8*c_0011_3^3*c_0101_7 + 377/21*c_0011_4^3*c_0101_7 + 193/21*c_0011_3^2*c_0101_6*c_0101_7 - 79/21*c_0011_3^2*c_0101_7^2 + 33*c_0011_4^2*c_0101_7^2 + 190/21*c_0011_3*c_0101_6*c_0101_7^2 - 464/21*c_0011_3*c_0101_7^3 + 920/21*c_0011_4*c_0101_7^3 - 673/21*c_0101_6*c_0101_7^3 + 887/21*c_0101_7^4 - 1718/7*c_0101_6*c_0101_7^2*c_1100_0 + 2501/63*c_0101_7^3*c_1100_0 + 260/7*c_0011_3^3 + 971/9*c_0011_4^3 + 235/21*c_0011_3^2*c_0101_6 + 762/7*c_0011_3^2*c_0101_7 + 5876/21*c_0011_4^2*c_0101_7 + 2063/9*c_0011_3*c_0101_6*c_0101_7 - 2838/7*c_0011_3*c_0101_7^2 + 24932/63*c_0011_4*c_0101_7^2 + 39185/294*c_0101_5*c_0101_7^2 - 4592/9*c_0101_6*c_0101_7^2 + 31964/63*c_0101_7^3 - 23215/441*c_0011_3*c_0101_7*c_1100_0 - 30476/147*c_0011_4*c_0101_7*c_1100_0 + 22450/189*c_0101_6*c_0101_7*c_1100_0 - 296665/882*c_0101_7^2*c_1100_0 - 39331/1323*c_0011_3^2 + 280195/2646*c_0011_4^2 - 1831/21*c_0011_3*c_0101_6 - 110087/1029*c_0101_0*c_0101_6 - 7424/9261*c_0101_5*c_0101_6 - 72559/2646*c_0011_3*c_0101_7 + 30722/147*c_0011_4*c_0101_7 - 1511159/18522*c_0101_0*c_0101_7 + 32999/3087*c_0101_5*c_0101_7 - 324095/1323*c_0101_6*c_0101_7 + 170987/1323*c_0101_7^2 - 335128/9261*c_0011_3*c_1100_0 - 9937829/18522*c_0011_4*c_1100_0 + 7050469/18522*c_0101_6*c_1100_0 - 6316811/9261*c_0101_7*c_1100_0 - 7400758/27783*c_1100_0^2 - 112519/9261*c_0011_3 - 365027/3087*c_0011_4 + 1791217/55566*c_0011_9 - 6135734/27783*c_0101_0 + 6633955/55566*c_0101_5 + 426200/9261*c_0101_6 - 4033346/9261*c_0101_7 - 6119444/27783*c_1100_0 - 1878391/55566, c_0101_6*c_0101_7^3*c_1100_0 + 1/7*c_0011_4^4 - 1/7*c_0011_3^3*c_0101_7 - 3/7*c_0011_3^2*c_0101_7^2 - 3/7*c_0011_4^2*c_0101_7^2 - 5/7*c_0011_3*c_0101_6*c_0101_7^2 + 8/7*c_0011_3*c_0101_7^3 - 5/7*c_0011_4*c_0101_7^3 + 9/7*c_0101_6*c_0101_7^3 - 8/7*c_0101_7^4 + c_0101_6*c_0101_7^2*c_1100_0 + 1/21*c_0101_7^3*c_1100_0 - 1/7*c_0011_3^3 - 2/3*c_0011_4^3 - 4/7*c_0011_3^2*c_0101_7 - 13/7*c_0011_4^2*c_0101_7 - 29/21*c_0011_3*c_0101_6*c_0101_7 + 18/7*c_0011_3*c_0101_7^2 - 59/21*c_0011_4*c_0101_7^2 - 9/14*c_0101_5*c_0101_7^2 + 74/21*c_0101_6*c_0101_7^2 - 68/21*c_0101_7^3 + 2*c_0011_4*c_0101_7*c_1100_0 - 17/9*c_0101_6*c_0101_7*c_1100_0 + 51/14*c_0101_7^2*c_1100_0 + 11/63*c_0011_3^2 - 59/126*c_0011_4^2 + 11/21*c_0011_3*c_0101_6 + 85/147*c_0101_0*c_0101_6 + 4/441*c_0101_5*c_0101_6 - 1/18*c_0011_3*c_0101_7 - 16/21*c_0011_4*c_0101_7 + 4495/6174*c_0101_0*c_0101_7 - 193/3087*c_0101_5*c_0101_7 + 46/63*c_0101_6*c_0101_7 + 8/63*c_0101_7^2 + 59/441*c_0011_3*c_1100_0 + 6683/2058*c_0011_4*c_1100_0 - 15541/6174*c_0101_6*c_1100_0 + 655/147*c_0101_7*c_1100_0 + 10522/9261*c_1100_0^2 + 8/441*c_0011_3 + 2491/3087*c_0011_4 - 463/18522*c_0011_9 + 9698/9261*c_0101_0 - 9757/18522*c_0101_5 - 1637/3087*c_0101_6 + 9146/3087*c_0101_7 + 8948/9261*c_1100_0 + 3385/18522, c_0101_7^4*c_1100_0 + 3/7*c_0011_4^4 + 1/7*c_0011_3^3*c_0101_6 - 3/7*c_0011_3^3*c_0101_7 + 8/7*c_0011_4^3*c_0101_7 - 4/7*c_0011_3^2*c_0101_6*c_0101_7 + c_0011_3^2*c_0101_7^2 + 12/7*c_0011_4^2*c_0101_7^2 + 12/7*c_0011_3*c_0101_6*c_0101_7^2 - 16/7*c_0011_3*c_0101_7^3 + 17/7*c_0011_4*c_0101_7^3 - 3*c_0101_6*c_0101_7^3 + 20/7*c_0101_7^4 - 310/21*c_0101_6*c_0101_7^2*c_1100_0 + 16/7*c_0101_7^3*c_1100_0 + 13/7*c_0011_3^3 + 46/7*c_0011_4^3 - 5/7*c_0011_3^2*c_0101_6 + 193/21*c_0011_3^2*c_0101_7 + 52/3*c_0011_4^2*c_0101_7 + 123/7*c_0011_3*c_0101_6*c_0101_7 - 589/21*c_0011_3*c_0101_7^2 + 178/7*c_0011_4*c_0101_7^2 + 2557/294*c_0101_5*c_0101_7^2 - 718/21*c_0101_6*c_0101_7^2 + 706/21*c_0101_7^3 + 67/147*c_0011_3*c_0101_7*c_1100_0 - 2230/147*c_0011_4*c_0101_7*c_1100_0 + 5896/441*c_0101_6*c_0101_7*c_1100_0 - 8179/294*c_0101_7^2*c_1100_0 - 880/441*c_0011_3^2 + 5605/882*c_0011_4^2 - 131/21*c_0011_3*c_0101_6 - 40/7*c_0101_0*c_0101_6 - 11/21*c_0101_5*c_0101_6 + 305/882*c_0011_3*c_0101_7 + 1640/147*c_0011_4*c_0101_7 - 42605/6174*c_0101_0*c_0101_7 + 2833/3087*c_0101_5*c_0101_7 - 4637/441*c_0101_6*c_0101_7 + 1613/441*c_0101_7^2 - 4/3*c_0011_3*c_1100_0 - 214021/6174*c_0011_4*c_1100_0 + 168451/6174*c_0101_6*c_1100_0 - 20303/441*c_0101_7*c_1100_0 - 193987/9261*c_1100_0^2 - 1/3*c_0011_3 - 25162/3087*c_0011_4 + 53161/18522*c_0011_9 - 143852/9261*c_0101_0 + 170629/18522*c_0101_5 + 15313/3087*c_0101_6 - 93217/3087*c_0101_7 - 147587/9261*c_1100_0 - 38239/18522, c_0011_3^4 + c_0011_4^4 + 3*c_0011_3^3*c_0101_6 - 5*c_0011_3^3*c_0101_7 + 3*c_0011_4^3*c_0101_7 - 7*c_0011_3^2*c_0101_6*c_0101_7 + 9*c_0011_3^2*c_0101_7^2 + 5*c_0011_4^2*c_0101_7^2 + 11*c_0011_3*c_0101_6*c_0101_7^2 - 13*c_0011_3*c_0101_7^3 + 7*c_0011_4*c_0101_7^3 - 11*c_0101_6*c_0101_7^3 + 9*c_0101_7^4 - 56*c_0101_6*c_0101_7^2*c_1100_0 + 8*c_0101_7^3*c_1100_0 + 5*c_0011_3^3 + 25*c_0011_4^3 - 10*c_0011_3^2*c_0101_6 + 49*c_0011_3^2*c_0101_7 + 69*c_0011_4^2*c_0101_7 + 85*c_0011_3*c_0101_6*c_0101_7 - 125*c_0011_3*c_0101_7^2 + 105*c_0011_4*c_0101_7^2 + 1549/42*c_0101_5*c_0101_7^2 - 147*c_0101_6*c_0101_7^2 + 140*c_0101_7^3 + 20*c_0011_3*c_0101_7*c_1100_0 - 1187/21*c_0011_4*c_0101_7*c_1100_0 + 475/7*c_0101_6*c_0101_7*c_1100_0 - 5189/42*c_0101_7^2*c_1100_0 - 25/3*c_0011_3^2 + 1153/42*c_0011_4^2 - 28*c_0011_3*c_0101_6 - 120/7*c_0101_0*c_0101_6 - 95/21*c_0101_5*c_0101_6 + 317/42*c_0011_3*c_0101_7 + 1003/21*c_0011_4*c_0101_7 - 2467/98*c_0101_0*c_0101_7 + 1718/441*c_0101_5*c_0101_7 - 213/7*c_0101_6*c_0101_7 + 113/7*c_0101_7^2 - 10/21*c_0011_3*c_1100_0 - 127693/882*c_0011_4*c_1100_0 + 112993/882*c_0101_6*c_1100_0 - 12058/63*c_0101_7*c_1100_0 - 153271/1323*c_1100_0^2 + 20/21*c_0011_3 - 14414/441*c_0011_4 + 54991/2646*c_0011_9 - 106628/1323*c_0101_0 + 130999/2646*c_0101_5 + 11999/441*c_0101_6 - 54869/441*c_0101_7 - 113426/1323*c_1100_0 - 25987/2646, c_0101_5*c_0101_7^3 + 1/3*c_0101_7^3*c_1100_0 - 2/3*c_0011_4^3 - c_0011_4^2*c_0101_7 - 2/3*c_0011_3*c_0101_6*c_0101_7 + c_0011_3*c_0101_7^2 - 2/3*c_0011_4*c_0101_7^2 - 1/2*c_0101_5*c_0101_7^2 + 2/3*c_0101_6*c_0101_7^2 - 2/3*c_0101_7^3 - 2/9*c_0101_6*c_0101_7*c_1100_0 + 3/2*c_0101_7^2*c_1100_0 + 2/9*c_0011_3^2 - 5/18*c_0011_4^2 + 2/3*c_0011_3*c_0101_6 + 10/21*c_0101_0*c_0101_6 - 2/63*c_0101_5*c_0101_6 - 7/18*c_0011_3*c_0101_7 - 1/3*c_0011_4*c_0101_7 + 19/126*c_0101_0*c_0101_7 + 5/21*c_0101_5*c_0101_7 + 1/9*c_0101_6*c_0101_7 - 1/9*c_0101_7^2 + 2/63*c_0011_3*c_1100_0 + 229/126*c_0011_4*c_1100_0 - 173/126*c_0101_6*c_1100_0 + 124/63*c_0101_7*c_1100_0 + 47/27*c_1100_0^2 - 4/63*c_0011_3 + 10/21*c_0011_4 - 5/54*c_0011_9 + 28/27*c_0101_0 - 41/54*c_0101_5 - 4/9*c_0101_6 + 115/63*c_0101_7 + 28/27*c_1100_0 + 5/54, c_0011_3*c_0101_7^2*c_1100_0 + 3*c_0101_6*c_0101_7^2*c_1100_0 - c_0101_7^3*c_1100_0 - c_0011_4^3 + c_0011_3^2*c_0101_6 - 3*c_0011_3^2*c_0101_7 - 3*c_0011_4^2*c_0101_7 - 5*c_0011_3*c_0101_6*c_0101_7 + 7*c_0011_3*c_0101_7^2 - 5*c_0011_4*c_0101_7^2 - 3/2*c_0101_5*c_0101_7^2 + 8*c_0101_6*c_0101_7^2 - 7*c_0101_7^3 - c_0011_3*c_0101_7*c_1100_0 + 3*c_0011_4*c_0101_7*c_1100_0 - 10/3*c_0101_6*c_0101_7*c_1100_0 + 13/2*c_0101_7^2*c_1100_0 + 1/3*c_0011_3^2 - 7/6*c_0011_4^2 + c_0011_3*c_0101_6 + 2/7*c_0101_0*c_0101_6 + 8/21*c_0101_5*c_0101_6 + 1/6*c_0011_3*c_0101_7 - 2*c_0011_4*c_0101_7 + 95/42*c_0101_0*c_0101_7 - 3/7*c_0101_5*c_0101_7 + 5/3*c_0101_6*c_0101_7 - 2/3*c_0101_7^2 - 8/21*c_0011_3*c_1100_0 + 305/42*c_0011_4*c_1100_0 - 319/42*c_0101_6*c_1100_0 + 239/21*c_0101_7*c_1100_0 + 28/9*c_1100_0^2 - 5/21*c_0011_3 + 15/7*c_0011_4 - 7/18*c_0011_9 + 23/9*c_0101_0 - 25/18*c_0101_5 - 53/21*c_0101_6 + 23/3*c_0101_7 + 23/9*c_1100_0 + 7/18, c_0011_4*c_0101_7^2*c_1100_0 - 8*c_0101_6*c_0101_7^2*c_1100_0 + 3*c_0101_7^3*c_1100_0 + c_0011_3^3 + 3*c_0011_4^3 + 4*c_0011_3^2*c_0101_7 + 8*c_0011_4^2*c_0101_7 + 8*c_0011_3*c_0101_6*c_0101_7 - 13*c_0011_3*c_0101_7^2 + 12*c_0011_4*c_0101_7^2 + 4*c_0101_5*c_0101_7^2 - 16*c_0101_6*c_0101_7^2 + 16*c_0101_7^3 - 5*c_0011_4*c_0101_7*c_1100_0 + 4*c_0101_6*c_0101_7*c_1100_0 - 10*c_0101_7^2*c_1100_0 - c_0011_3^2 + 3*c_0011_4^2 - 3*c_0011_3*c_0101_6 - 20/7*c_0101_0*c_0101_6 - 1/7*c_0101_5*c_0101_6 + 6*c_0011_4*c_0101_7 - 20/7*c_0101_0*c_0101_7 + 11/21*c_0101_5*c_0101_7 - 6*c_0101_6*c_0101_7 + 4*c_0101_7^2 - 6/7*c_0011_3*c_1100_0 - 347/21*c_0011_4*c_1100_0 + 263/21*c_0101_6*c_1100_0 - 451/21*c_0101_7*c_1100_0 - 9*c_1100_0^2 - 2/7*c_0011_3 - 83/21*c_0011_4 + c_0011_9 - 7*c_0101_0 + 4*c_0101_5 + 44/21*c_0101_6 - 299/21*c_0101_7 - 7*c_1100_0 - 1, c_0101_0*c_0101_6*c_0101_7 - c_0011_3*c_0101_7*c_1100_0 - 1/3*c_0101_6*c_0101_7*c_1100_0 + c_0101_7^2*c_1100_0 + 1/3*c_0011_3^2 + 1/3*c_0011_4^2 + c_0011_3*c_0101_6 - 4/3*c_0011_3*c_0101_7 + c_0011_4*c_0101_7 + 1/3*c_0101_0*c_0101_7 - 4/3*c_0101_6*c_0101_7 + 4/3*c_0101_7^2 - 2/3*c_0011_4*c_1100_0 + 2/3*c_0101_6*c_1100_0 - c_0101_7*c_1100_0 + 19/9*c_1100_0^2 + 1/9*c_0011_9 + 5/9*c_0101_0 - 8/9*c_0101_5 + 5/9*c_1100_0 - 1/9, c_0101_5*c_0101_6*c_0101_7 + 1/3*c_0101_6*c_0101_7*c_1100_0 + 2/3*c_0011_3^2 + 2/3*c_0011_4^2 + c_0011_3*c_0101_6 - 2/3*c_0011_3*c_0101_7 + c_0011_4*c_0101_7 + 2/3*c_0101_0*c_0101_7 - 2/3*c_0101_6*c_0101_7 + 2/3*c_0101_7^2 - 4/3*c_0011_4*c_1100_0 + 4/3*c_0101_6*c_1100_0 - c_0101_7*c_1100_0 + 20/9*c_1100_0^2 + 2/9*c_0011_9 + 1/9*c_0101_0 - 7/9*c_0101_5 + 1/9*c_1100_0 - 2/9, c_0101_0*c_0101_7^2 - 1/2*c_0101_5*c_0101_7^2 - c_0011_4*c_0101_7*c_1100_0 + c_0101_6*c_0101_7*c_1100_0 - 1/2*c_0101_7^2*c_1100_0 - 1/2*c_0011_4^2 + 1/2*c_0011_3*c_0101_7 - c_0011_4*c_0101_7 - 1/2*c_0101_0*c_0101_7 + c_0101_6*c_0101_7 - c_0101_7^2 + 1/2*c_0011_4*c_1100_0 - 1/2*c_0101_6*c_1100_0 + 1/3*c_1100_0^2 - 1/6*c_0011_9 + 2/3*c_0101_0 - 1/6*c_0101_5 + 2/3*c_1100_0 + 1/6, c_0011_3^2*c_1100_0 + c_0101_7^2*c_1100_0 + c_0011_3*c_0101_7 + 5/7*c_0101_0*c_0101_7 + 2/7*c_0101_5*c_0101_7 + 5/7*c_0011_4*c_1100_0 - 5/7*c_0101_6*c_1100_0 + 2*c_0101_7*c_1100_0 - 40/7*c_1100_0^2 + 4/7*c_0011_4 + 13/7*c_0011_9 - 22/7*c_0101_0 + 15/7*c_0101_5 - 4/7*c_0101_6 + 12/7*c_0101_7 - 24/7*c_1100_0 - 3/7, c_0011_4^2*c_1100_0 - c_0011_3*c_0101_7*c_1100_0 - 1/7*c_0101_0*c_0101_7 + 1/7*c_0101_5*c_0101_7 - c_0101_7^2 + 6/7*c_0011_4*c_1100_0 - 6/7*c_0101_6*c_1100_0 + c_0101_7*c_1100_0 - 53/21*c_1100_0^2 + 2/7*c_0011_4 + 16/21*c_0011_9 - 19/21*c_0101_0 + 19/21*c_0101_5 - 2/7*c_0101_6 + 6/7*c_0101_7 - 22/21*c_1100_0 - 1/21, c_0011_3*c_0101_6*c_1100_0 + c_0011_4*c_0101_7*c_1100_0 + 3/7*c_0101_0*c_0101_7 - 3/7*c_0101_5*c_0101_7 + c_0101_6*c_0101_7 + 3/7*c_0011_4*c_1100_0 - 3/7*c_0101_6*c_1100_0 + c_0101_7*c_1100_0 - 24/7*c_1100_0^2 + 1/7*c_0011_4 + 5/7*c_0011_9 - 9/7*c_0101_0 + 9/7*c_0101_5 - 1/7*c_0101_6 + 3/7*c_0101_7 - 13/7*c_1100_0 + 1/7, c_0011_3*c_1100_0^2 + 5/7*c_0101_0*c_0101_6 + 2/7*c_0101_5*c_0101_6 + 3/7*c_0101_0*c_0101_7 - 3/7*c_0101_5*c_0101_7 + 5/7*c_0011_3*c_1100_0 + 3/7*c_0011_4*c_1100_0 + 11/7*c_0101_6*c_1100_0 + 2/7*c_0101_7*c_1100_0 + 4/7*c_0011_3 + 1/7*c_0011_4 + 11/7*c_0101_6 - 1/7*c_0101_7, c_0011_4*c_1100_0^2 + 3/7*c_0101_0*c_0101_6 - 3/7*c_0101_5*c_0101_6 + 5/7*c_0101_0*c_0101_7 + 2/7*c_0101_5*c_0101_7 + 3/7*c_0011_3*c_1100_0 + 5/7*c_0011_4*c_1100_0 + 2/7*c_0101_6*c_1100_0 + 11/7*c_0101_7*c_1100_0 + 1/7*c_0011_3 + 4/7*c_0011_4 - 1/7*c_0101_6 + 11/7*c_0101_7, c_0101_6*c_1100_0^2 + 3/7*c_0101_0*c_0101_6 - 3/7*c_0101_5*c_0101_6 + 3/7*c_0011_3*c_1100_0 + c_0101_6*c_1100_0 - 3/7*c_0101_7*c_1100_0 + 1/7*c_0011_3 + 3/7*c_0101_6 - 1/7*c_0101_7, c_0101_7*c_1100_0^2 + 3/7*c_0101_0*c_0101_7 - 3/7*c_0101_5*c_0101_7 + 3/7*c_0011_4*c_1100_0 - 3/7*c_0101_6*c_1100_0 + c_0101_7*c_1100_0 + 1/7*c_0011_4 - 1/7*c_0101_6 + 3/7*c_0101_7, c_1100_0^3 + 40/7*c_1100_0^2 - 13/7*c_0011_9 + 22/7*c_0101_0 - 15/7*c_0101_5 + 24/7*c_1100_0 + 3/7, c_0011_3*c_0011_4 - c_0101_6*c_0101_7 - c_0101_7*c_1100_0 + 2*c_1100_0^2 + c_0101_0 - c_0101_5 + c_1100_0, c_0011_3*c_0011_9 - c_0101_0*c_0101_7 + c_0011_4*c_1100_0, c_0011_4*c_0011_9 - c_0101_0*c_0101_6 + c_0011_3*c_1100_0, c_0011_9^2 + 2/3*c_1100_0^2 - 1/3*c_0011_9 + 4/3*c_0101_0 - 1/3*c_0101_5 + 4/3*c_1100_0 + 1/3, c_0011_3*c_0101_0 - c_0101_0*c_0101_7 - c_0101_6*c_1100_0 - c_0101_6, c_0011_4*c_0101_0 - c_0101_0*c_0101_6 - c_0101_7*c_1100_0 - c_0101_7, c_0011_9*c_0101_0 + 5/3*c_1100_0^2 - 1/3*c_0011_9 + 4/3*c_0101_0 - 1/3*c_0101_5 + 4/3*c_1100_0 + 1/3, c_0101_0^2 + 2/3*c_1100_0^2 - 1/3*c_0011_9 + 4/3*c_0101_0 - 1/3*c_0101_5 + 1/3*c_1100_0 + 1/3, c_0011_3*c_0101_5 + c_0101_0*c_0101_6 + c_0101_5*c_0101_6 - c_0101_5*c_0101_7 + 2*c_0101_6*c_1100_0 + c_0011_3 + 2*c_0101_6 - c_0101_7, c_0011_4*c_0101_5 - c_0101_5*c_0101_6 + c_0101_0*c_0101_7 + c_0101_5*c_0101_7 + 2*c_0101_7*c_1100_0 + c_0011_4 - c_0101_6 + 2*c_0101_7, c_0011_9*c_0101_5 - 2/3*c_1100_0^2 + 1/3*c_0011_9 + 2/3*c_0101_0 + 1/3*c_0101_5 - 1/3*c_1100_0 + 2/3, c_0101_0*c_0101_5 - 5/3*c_1100_0^2 + 1/3*c_0011_9 - 4/3*c_0101_0 + 4/3*c_0101_5 - 4/3*c_1100_0 - 1/3, c_0101_5^2 + 2/3*c_1100_0^2 - 1/3*c_0011_9 + 1/3*c_0101_0 - 1/3*c_0101_5 + 1/3*c_1100_0 + 1/3, c_0011_4*c_0101_6 + c_0101_0*c_0101_7 + c_0101_7^2 - c_0011_4*c_1100_0 + c_0101_6*c_1100_0 - 2/3*c_1100_0^2 + 1/3*c_0011_9 - 4/3*c_0101_0 + 1/3*c_0101_5 - 4/3*c_1100_0 - 1/3, c_0011_9*c_0101_6 - c_0101_0*c_0101_6 + c_0011_3*c_1100_0 - c_0101_7*c_1100_0, c_0101_6^2 + c_0011_3*c_0101_7 + c_0101_0*c_0101_7 - c_0011_4*c_1100_0 + c_0101_6*c_1100_0 - 2/3*c_1100_0^2 + 1/3*c_0011_9 - 4/3*c_0101_0 + 1/3*c_0101_5 - 4/3*c_1100_0 - 1/3, c_0011_9*c_0101_7 - c_0101_0*c_0101_7 + c_0011_4*c_1100_0 - c_0101_6*c_1100_0, c_0011_9*c_1100_0 + 2*c_1100_0^2 + c_0101_0 - c_0101_5 + c_1100_0, c_0101_0*c_1100_0 - 2*c_1100_0^2 + c_0011_9 - c_0101_0 + c_0101_5 - c_1100_0, c_0101_5*c_1100_0 + 5*c_1100_0^2 - 2*c_0011_9 + 4*c_0101_0 - 2*c_0101_5 + 4*c_1100_0 + 1, c_0011_0 - 1, c_0011_7 - c_0011_9 - c_0101_7 ], Ideal of Polynomial ring of rank 10 over Rational Field Order: Lexicographical Variables: c_0011_0, c_0011_3, c_0011_4, c_0011_7, c_0011_9, c_0101_0, c_0101_5, c_0101_6, c_0101_7, c_1100_0 Inhomogeneous, Dimension 0, Radical, Prime Groebner basis: [ c_0011_0 - 1, c_0011_3 - 7/33*c_1100_0^4 - 8/33*c_1100_0^3 + 41/33*c_1100_0^2 + 64/33*c_1100_0 + 53/33, c_0011_4 - 1, c_0011_7 + 7/33*c_1100_0^4 + 8/33*c_1100_0^3 - 41/33*c_1100_0^2 - 64/33*c_1100_0 - 53/33, c_0011_9 - 7/33*c_1100_0^4 - 8/33*c_1100_0^3 + 41/33*c_1100_0^2 + 64/33*c_1100_0 + 53/33, c_0101_0 + 8/33*c_1100_0^4 - 5/33*c_1100_0^3 - 28/33*c_1100_0^2 - 26/33*c_1100_0 - 4/33, c_0101_5 + 10/33*c_1100_0^4 + 2/33*c_1100_0^3 - 35/33*c_1100_0^2 - 82/33*c_1100_0 - 71/33, c_0101_6 + 1, c_0101_7 + 8/33*c_1100_0^4 - 5/33*c_1100_0^3 - 28/33*c_1100_0^2 - 26/33*c_1100_0 - 4/33, c_1100_0^5 + c_1100_0^4 - 4*c_1100_0^3 - 11*c_1100_0^2 - 13*c_1100_0 - 7 ] ] IDEAL=DECOMPOSITION=ENDS=HERE FREE=VARIABLES=IN=COMPONENTS=BEGINS=HERE [ [ "c_0101_7" ], [] ] FREE=VARIABLES=IN=COMPONENTS=ENDS=HERE Status: Finding witnesses for non-zero dimensional ideals... Status: Computing Groebner basis... Time: 0.020 Status: Saturating ideal ( 1 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 2 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 3 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 4 / 10 )... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 5 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 6 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 7 / 10 )... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 8 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 9 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Saturating ideal ( 10 / 10 )... Time: 0.010 Status: Recomputing Groebner basis... Time: 0.000 Status: Dimension of ideal: 0 [] Status: Testing witness [ 1 ] ... Time: 0.000 Status: Changing to term order lex ... Time: 0.000 Status: Recomputing Groebner basis... Time: 0.000 Status: Confirming is prime... Time: 0.060 ==WITNESSES=FOR=COMPONENTS=BEGINS== ==WITNESSES=BEGINS== ==WITNESS=BEGINS== Ideal of Polynomial ring of rank 10 over Rational Field Order: Lexicographical Variables: c_0011_0, c_0011_3, c_0011_4, c_0011_7, c_0011_9, c_0101_0, c_0101_5, c_0101_6, c_0101_7, c_1100_0 Inhomogeneous, Dimension 0, Radical, Prime Groebner basis: [ c_0011_0 - 1, c_0011_3 - 238/41*c_0101_6*c_1100_0^5 - 506/41*c_0101_6*c_1100_0^4 - 229/41*c_0101_6*c_1100_0^3 + 167/41*c_0101_6*c_1100_0^2 + 79/41*c_0101_6*c_1100_0 + 16/41*c_0101_6 - 1, c_0011_4 - c_0101_6 - 238/41*c_1100_0^5 - 506/41*c_1100_0^4 - 229/41*c_1100_0^3 + 167/41*c_1100_0^2 + 79/41*c_1100_0 + 16/41, c_0011_7 + 35/123*c_1100_0^5 + 277/123*c_1100_0^4 + 305/123*c_1100_0^3 - 52/41*c_1100_0^2 - 172/123*c_1100_0 - 53/123, c_0011_9 + 35/123*c_1100_0^5 + 277/123*c_1100_0^4 + 305/123*c_1100_0^3 - 52/41*c_1100_0^2 - 172/123*c_1100_0 + 70/123, c_0101_0 + 455/123*c_1100_0^5 + 1018/123*c_1100_0^4 + 398/123*c_1100_0^3 - 143/41*c_1100_0^2 - 22/123*c_1100_0 + 172/123, c_0101_5 + 637/123*c_1100_0^5 + 1253/123*c_1100_0^4 + 262/123*c_1100_0^3 - 274/41*c_1100_0^2 - 80/123*c_1100_0 + 167/123, c_0101_6^2 + 238/41*c_0101_6*c_1100_0^5 + 506/41*c_0101_6*c_1100_0^4 + 229/41*c_0101_6*c_1100_0^3 - 167/41*c_0101_6*c_1100_0^2 - 79/41*c_0101_6*c_1100_0 - 16/41*c_0101_6 + 1043/369*c_1100_0^5 + 1711/369*c_1100_0^4 + 110/369*c_1100_0^3 - 172/123*c_1100_0^2 + 188/369*c_1100_0 + 487/369, c_0101_7 - 1, c_1100_0^6 + 19/7*c_1100_0^5 + 2*c_1100_0^4 - 4/7*c_1100_0^3 - 5/7*c_1100_0^2 + 1/7*c_1100_0 + 1/7 ] ==WITNESS=ENDS== ==WITNESSES=ENDS== ==WITNESSES=BEGINS== ==WITNESSES=ENDS== ==WITNESSES=FOR=COMPONENTS=ENDS== ==GENUSES=FOR=COMPONENTS=BEGINS== ==GENUS=FOR=COMPONENT=BEGINS== 0 ==GENUS=FOR=COMPONENT=ENDS== ==GENUS=FOR=COMPONENT=BEGINS== ==GENUS=FOR=COMPONENT=ENDS== ==GENUSES=FOR=COMPONENTS=ENDS== Total time: 426.550 seconds, Total memory usage: 169.91MB