Magma V2.19-8 Wed Aug 21 2013 00:53:12 on localhost [Seed = 2260767504] Type ? for help. Type -D to quit. Loading file "L12n1367__sl2_c2.magma" ==TRIANGULATION=BEGINS== % Triangulation L12n1367 geometric_solution 11.96423008 oriented_manifold CS_known -0.0000000000000002 2 0 torus 0.000000000000 0.000000000000 torus 0.000000000000 0.000000000000 13 1 2 3 4 0132 0132 0132 0132 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1 0 0 1 0 5 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.884903644853 0.720181576081 0 5 7 6 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.548704260812 0.474673011551 8 0 7 9 0132 0132 3012 0132 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 -5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.936293319671 0.690234192609 10 11 5 0 0132 0132 2103 0132 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.216383678029 1.353957195977 12 10 0 8 0132 0132 0132 2031 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 -1 1 0 0 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.123096771438 0.437514861936 3 1 12 8 2103 0132 0132 1023 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.548704260812 0.474673011551 10 11 1 9 2103 1302 0132 1230 0 0 1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 5 -5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811933806383 0.613690889364 10 2 12 1 3120 1230 1023 0132 0 0 1 1 0 0 0 0 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 -4 4 -4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.493579408547 1.147199376592 2 4 9 5 0132 1302 1230 1023 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811933806383 0.613690889364 6 11 2 8 3012 0213 0132 3012 1 0 0 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 5 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.380729080077 0.691693692070 3 4 6 7 0132 0132 2103 3120 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 -4 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.404097699636 2.117976853708 12 3 9 6 1023 0132 0213 2031 1 0 1 1 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 0 5 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.308022192326 0.510125121421 4 11 7 5 0132 1023 1023 0132 0 0 1 1 0 -1 1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 -4 0 0 0 0 0 5 0 0 -5 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.493579408547 1.147199376592 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d, negation = (lambda x:-x): { 'c_1001_11' : d['c_1001_0'], 'c_1001_10' : d['c_0011_0'], 'c_1001_12' : d['c_0011_9'], 'c_1001_5' : d['c_0110_11'], 'c_1001_4' : negation(d['c_0011_7']), 'c_1001_7' : d['c_0101_12'], 'c_1001_6' : d['c_0110_11'], 'c_1001_1' : d['c_0101_2'], 'c_1001_0' : d['c_1001_0'], 'c_1001_3' : d['c_0011_0'], 'c_1001_2' : negation(d['c_0011_7']), 'c_1001_9' : d['c_1001_0'], 'c_1001_8' : d['c_0101_12'], 'c_1010_12' : d['c_0110_11'], 'c_1010_11' : d['c_0011_0'], 'c_1010_10' : negation(d['c_0011_7']), 's_0_10' : d['1'], 's_0_11' : d['1'], 's_0_12' : d['1'], 's_3_12' : d['1'], 's_2_8' : d['1'], 'c_0101_12' : d['c_0101_12'], 'c_0101_11' : d['c_0011_9'], 'c_0101_10' : d['c_0101_0'], 's_2_0' : negation(d['1']), 's_2_1' : d['1'], 's_2_2' : d['1'], 's_2_3' : negation(d['1']), 's_2_4' : d['1'], 's_2_5' : d['1'], 's_2_6' : d['1'], 's_2_7' : d['1'], 's_2_12' : d['1'], 's_2_10' : d['1'], 's_2_11' : d['1'], 's_0_8' : d['1'], 's_0_9' : d['1'], 's_0_6' : d['1'], 's_0_7' : d['1'], 's_0_4' : d['1'], 's_0_5' : negation(d['1']), 's_0_2' : d['1'], 's_0_3' : d['1'], 's_0_0' : negation(d['1']), 's_0_1' : negation(d['1']), 'c_1100_9' : negation(d['c_0101_12']), 'c_0011_10' : d['c_0011_10'], 'c_0011_12' : d['c_0011_10'], 'c_1100_5' : negation(d['c_0110_9']), 'c_1100_4' : negation(d['c_0110_5']), 'c_1100_7' : d['c_0110_9'], 'c_1100_6' : d['c_0110_9'], 'c_1100_1' : d['c_0110_9'], 'c_1100_0' : negation(d['c_0110_5']), 'c_1100_3' : negation(d['c_0110_5']), 'c_1100_2' : negation(d['c_0101_12']), 's_3_11' : d['1'], 'c_1100_11' : negation(d['c_0101_8']), 'c_1100_10' : negation(d['c_0011_9']), 's_3_10' : d['1'], 'c_1010_7' : d['c_0101_2'], 'c_1010_6' : d['c_0101_8'], 'c_1010_5' : d['c_0101_2'], 'c_1010_4' : d['c_0011_0'], 'c_1010_3' : d['c_1001_0'], 'c_1010_2' : d['c_1001_0'], 'c_1010_1' : d['c_0110_11'], 'c_1010_0' : negation(d['c_0011_7']), 'c_1010_9' : negation(d['c_0101_8']), 'c_1010_8' : d['c_0110_5'], 'c_1100_8' : d['c_0110_9'], 's_3_1' : d['1'], 's_3_0' : d['1'], 's_3_3' : negation(d['1']), 's_3_2' : d['1'], 's_3_5' : d['1'], 's_3_4' : d['1'], 's_3_7' : d['1'], 's_3_6' : d['1'], 's_3_9' : d['1'], 's_3_8' : d['1'], 'c_1100_12' : negation(d['c_0110_9']), 's_1_7' : d['1'], 's_1_6' : d['1'], 's_1_5' : negation(d['1']), 's_1_4' : d['1'], 's_1_3' : d['1'], 's_1_2' : d['1'], 's_1_1' : negation(d['1']), 's_1_0' : d['1'], 's_1_9' : d['1'], 's_1_8' : d['1'], 'c_0011_9' : d['c_0011_9'], 'c_0011_8' : d['c_0011_0'], 'c_0011_5' : d['c_0011_0'], 'c_0011_4' : negation(d['c_0011_10']), 'c_0011_7' : d['c_0011_7'], 'c_0011_6' : d['c_0011_0'], 'c_0011_1' : negation(d['c_0011_0']), 'c_0011_0' : d['c_0011_0'], 'c_0011_3' : negation(d['c_0011_10']), 'c_0011_2' : negation(d['c_0011_0']), 'c_0110_11' : d['c_0110_11'], 'c_0110_10' : d['c_0101_1'], 'c_0110_12' : d['c_0101_1'], 'c_0110_0' : d['c_0101_1'], 'c_0101_7' : d['c_0011_9'], 'c_0101_6' : d['c_0101_0'], 'c_0101_5' : d['c_0101_1'], 'c_0101_4' : d['c_0101_1'], 'c_0101_3' : d['c_0101_1'], 'c_0101_2' : d['c_0101_2'], 'c_0101_1' : d['c_0101_1'], 'c_0101_0' : d['c_0101_0'], 'c_0101_9' : d['c_0101_8'], 'c_0101_8' : d['c_0101_8'], 's_1_12' : d['1'], 's_1_11' : d['1'], 's_1_10' : d['1'], 'c_0110_9' : d['c_0110_9'], 'c_0110_8' : d['c_0101_2'], 'c_0110_1' : d['c_0101_0'], 'c_0011_11' : d['c_0011_10'], 'c_0110_3' : d['c_0101_0'], 'c_0110_2' : d['c_0101_8'], 'c_0110_5' : d['c_0110_5'], 'c_0110_4' : d['c_0101_12'], 'c_0110_7' : d['c_0101_1'], 'c_0110_6' : d['c_0011_9'], 's_2_9' : d['1']})} PY=EVAL=SECTION=ENDS=HERE PRIMARY=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 14 over Rational Field Order: Lexicographical Variables: t, c_0011_0, c_0011_10, c_0011_7, c_0011_9, c_0101_0, c_0101_1, c_0101_12, c_0101_2, c_0101_8, c_0110_11, c_0110_5, c_0110_9, c_1001_0 Inhomogeneous, Dimension 0, Radical, Prime Size of variety over algebraically closed field: 7 Groebner basis: [ t + 3259591/1876824*c_1001_0^6 - 2543939/938412*c_1001_0^5 + 8907349/469206*c_1001_0^4 + 171906857/1876824*c_1001_0^3 + 39971963/234603*c_1001_0^2 + 102573511/625608*c_1001_0 + 56294455/625608, c_0011_0 - 1, c_0011_10 - 8399/104268*c_1001_0^6 + 3761/26067*c_1001_0^5 - 48511/52134*c_1001_0^4 - 418495/104268*c_1001_0^3 - 188192/26067*c_1001_0^2 - 222659/34756*c_1001_0 - 118249/34756, c_0011_7 + 8399/104268*c_1001_0^6 - 3761/26067*c_1001_0^5 + 48511/52134*c_1001_0^4 + 418495/104268*c_1001_0^3 + 188192/26067*c_1001_0^2 + 222659/34756*c_1001_0 + 118249/34756, c_0011_9 + 755/34756*c_1001_0^6 + 623/52134*c_1001_0^5 + 3437/26067*c_1001_0^4 + 175999/104268*c_1001_0^3 + 108857/26067*c_1001_0^2 + 498883/104268*c_1001_0 + 65033/34756, c_0101_0 - 1, c_0101_1 - 9277/104268*c_1001_0^6 + 1473/8689*c_1001_0^5 - 17969/17378*c_1001_0^4 - 150107/34756*c_1001_0^3 - 63307/8689*c_1001_0^2 - 610951/104268*c_1001_0 - 92759/34756, c_0101_12 + 755/34756*c_1001_0^6 + 623/52134*c_1001_0^5 + 3437/26067*c_1001_0^4 + 175999/104268*c_1001_0^3 + 108857/26067*c_1001_0^2 + 498883/104268*c_1001_0 + 65033/34756, c_0101_2 - 3683/34756*c_1001_0^6 + 3550/26067*c_1001_0^5 - 53753/52134*c_1001_0^4 - 638297/104268*c_1001_0^3 - 283309/26067*c_1001_0^2 - 1001999/104268*c_1001_0 - 161575/34756, c_0101_8 + 1943/52134*c_1001_0^6 - 1737/17378*c_1001_0^5 + 8073/17378*c_1001_0^4 + 14196/8689*c_1001_0^3 + 8614/8689*c_1001_0^2 + 43703/52134*c_1001_0 + 6601/8689, c_0110_11 - 3683/34756*c_1001_0^6 + 3550/26067*c_1001_0^5 - 53753/52134*c_1001_0^4 - 638297/104268*c_1001_0^3 - 283309/26067*c_1001_0^2 - 1001999/104268*c_1001_0 - 161575/34756, c_0110_5 - 1, c_0110_9 + 7163/156402*c_1001_0^6 - 12467/156402*c_1001_0^5 + 67757/156402*c_1001_0^4 + 203561/78201*c_1001_0^3 + 219508/78201*c_1001_0^2 + 22455/17378*c_1001_0 + 806/8689, c_1001_0^7 - c_1001_0^6 + 10*c_1001_0^5 + 59*c_1001_0^4 + 127*c_1001_0^3 + 147*c_1001_0^2 + 102*c_1001_0 + 27 ] ] PRIMARY=DECOMPOSITION=ENDS=HERE CPUTIME : 0.340 Total time: 0.540 seconds, Total memory usage: 32.09MB