Magma V2.19-8 Thu Sep 12 2013 15:23:17 on localhost [Seed = 3783370502] Type ? for help. Type -D to quit. Loading file "10^2_147__sl2_c2.magma" ==TRIANGULATION=BEGINS== % Triangulation 10^2_147 geometric_solution 15.85131128 oriented_manifold CS_known -0.0000000000000004 2 0 torus 0.000000000000 0.000000000000 torus 0.000000000000 0.000000000000 17 1 2 3 4 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 1 -1 0 1 0 -1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.312137493599 1.094528716843 0 5 6 6 0132 0132 0213 0132 0 0 1 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.728466328479 1.326166907599 7 0 9 8 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 2 0 0 -2 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.481109803165 0.618507969397 8 10 7 0 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 0 -1 0 1 0 -1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.164705705423 0.820487548279 7 5 0 11 1023 1023 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 -2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.875735881167 0.741509902823 4 1 12 13 1023 0132 0132 0132 0 0 1 1 0 0 1 -1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -2 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.263730878787 0.832048029936 7 1 1 11 2103 0213 0132 2103 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.148180736081 0.723712780936 2 4 6 3 0132 1023 2103 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 -1 0 0 1 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.370983077511 0.640140281061 3 14 2 15 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 1 0 0 0 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.251793345615 0.655164835488 15 12 14 2 0132 1023 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.607524179602 0.939747581257 14 3 12 13 0132 0132 1023 1023 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 -1 0 1 2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.519016096228 1.526709624852 16 16 4 6 0132 1230 0132 2103 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.568905495053 0.586781369378 9 13 10 5 1023 0132 1023 0132 0 0 1 1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -1 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.145353131478 0.572882794773 16 12 5 10 3120 0132 0132 1023 0 0 1 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 2 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.319749816869 1.158806625936 10 8 15 9 0132 0132 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.248220725559 1.026200174736 9 16 8 14 0132 3120 0132 0132 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.315117142054 1.506348535703 11 15 11 13 0132 3120 3012 3120 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.148301510495 0.878460149030 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d, negation = (lambda x:-x): { 's_3_0' : d['1'], 'c_0110_6' : d['c_0110_6'], 'c_1001_15' : d['c_0011_11'], 'c_1001_14' : d['c_0011_11'], 'c_1001_16' : negation(d['c_0011_11']), 'c_1001_11' : d['c_0101_13'], 'c_1001_10' : d['c_0101_12'], 'c_1001_13' : d['c_1001_1'], 'c_1001_12' : d['c_0101_10'], 'c_1001_5' : d['c_1001_1'], 'c_1001_4' : d['c_0101_5'], 'c_1001_7' : d['c_0011_6'], 'c_1001_6' : d['c_1001_1'], 'c_1001_1' : d['c_1001_1'], 'c_1001_0' : d['c_0101_12'], 'c_1001_3' : d['c_0101_11'], 'c_1001_2' : d['c_0101_5'], 'c_1001_9' : d['c_0101_12'], 'c_1001_8' : d['c_0101_12'], 'c_1010_13' : d['c_0101_10'], 'c_1010_12' : d['c_1001_1'], 'c_1010_11' : d['c_0101_16'], 'c_1010_10' : d['c_0101_11'], 'c_1010_16' : d['c_0011_12'], 'c_1010_15' : d['c_0011_11'], 'c_1010_14' : d['c_0101_12'], 's_0_10' : d['1'], 's_0_11' : d['1'], 's_0_12' : d['1'], 's_0_13' : d['1'], 's_0_14' : d['1'], 's_0_15' : d['1'], 's_0_16' : d['1'], 's_3_16' : d['1'], 's_2_8' : d['1'], 's_2_9' : d['1'], 'c_0101_11' : d['c_0101_11'], 'c_0101_10' : d['c_0101_10'], 'c_0101_16' : d['c_0101_16'], 'c_0101_15' : d['c_0101_15'], 'c_0101_14' : d['c_0101_10'], 's_2_0' : negation(d['1']), 's_2_1' : d['1'], 's_2_2' : d['1'], 's_2_3' : d['1'], 's_2_4' : d['1'], 's_2_5' : negation(d['1']), 's_2_6' : d['1'], 's_2_7' : d['1'], 's_2_12' : negation(d['1']), 's_2_13' : d['1'], 's_2_10' : negation(d['1']), 's_2_11' : d['1'], 's_2_16' : d['1'], 's_2_14' : d['1'], 's_2_15' : d['1'], 's_0_6' : d['1'], 's_0_7' : d['1'], 's_0_4' : d['1'], 's_0_5' : d['1'], 's_0_2' : d['1'], 's_0_3' : d['1'], 's_0_0' : negation(d['1']), 's_0_1' : negation(d['1']), 'c_0011_15' : negation(d['c_0011_12']), 'c_0011_14' : negation(d['c_0011_10']), 'c_0011_16' : negation(d['c_0011_11']), 'c_0011_11' : d['c_0011_11'], 'c_0011_10' : d['c_0011_10'], 'c_0011_13' : negation(d['c_0011_12']), 'c_0011_12' : d['c_0011_12'], 'c_1100_5' : negation(d['c_1100_10']), 'c_1100_4' : negation(d['c_0110_6']), 'c_1100_7' : negation(d['c_0110_6']), 'c_1100_6' : negation(d['c_0101_16']), 'c_1100_1' : negation(d['c_0101_16']), 'c_1100_0' : negation(d['c_0110_6']), 'c_1100_3' : negation(d['c_0110_6']), 'c_1100_2' : d['c_1100_14'], 'c_1100_14' : d['c_1100_14'], 'c_1100_15' : d['c_1100_14'], 's_3_11' : d['1'], 'c_1100_16' : negation(d['c_0101_13']), 'c_1100_11' : negation(d['c_0110_6']), 'c_1100_10' : d['c_1100_10'], 'c_1100_13' : negation(d['c_1100_10']), 's_3_10' : d['1'], 'c_1100_9' : d['c_1100_14'], 's_3_13' : d['1'], 'c_1010_7' : d['c_0101_11'], 'c_1010_6' : negation(d['c_0101_16']), 'c_1010_5' : d['c_1001_1'], 'c_1010_4' : d['c_0101_13'], 'c_1010_3' : d['c_0101_12'], 'c_1010_2' : d['c_0101_12'], 'c_1010_1' : d['c_1001_1'], 'c_1010_0' : d['c_0101_5'], 's_3_15' : d['1'], 'c_1010_9' : d['c_0101_5'], 'c_1010_8' : d['c_0011_11'], 's_3_1' : d['1'], 'c_0101_13' : d['c_0101_13'], 's_3_3' : negation(d['1']), 's_3_2' : d['1'], 's_3_5' : d['1'], 's_3_4' : d['1'], 's_3_7' : d['1'], 's_3_6' : d['1'], 's_3_9' : d['1'], 's_3_8' : d['1'], 'c_1100_12' : negation(d['c_1100_10']), 's_1_7' : d['1'], 's_1_6' : d['1'], 's_1_5' : negation(d['1']), 's_1_4' : d['1'], 's_1_3' : negation(d['1']), 's_1_2' : d['1'], 's_1_1' : negation(d['1']), 's_1_0' : d['1'], 's_1_9' : d['1'], 's_1_8' : d['1'], 'c_0011_9' : d['c_0011_12'], 'c_0011_8' : d['c_0011_10'], 'c_0011_5' : d['c_0011_0'], 'c_0011_4' : d['c_0011_0'], 'c_0011_7' : d['c_0011_0'], 'c_0011_6' : d['c_0011_6'], 'c_0011_1' : negation(d['c_0011_0']), 'c_0011_0' : d['c_0011_0'], 'c_0011_3' : negation(d['c_0011_10']), 'c_0011_2' : negation(d['c_0011_0']), 'c_0110_11' : d['c_0101_16'], 'c_0110_10' : d['c_0101_10'], 'c_0110_13' : d['c_0101_11'], 'c_0110_12' : d['c_0101_5'], 'c_0110_15' : d['c_0101_10'], 'c_0110_14' : d['c_0101_10'], 'c_0110_16' : d['c_0101_11'], 'c_0101_12' : d['c_0101_12'], 's_3_12' : negation(d['1']), 's_0_8' : d['1'], 's_0_9' : d['1'], 's_3_14' : d['1'], 'c_0101_7' : d['c_0101_0'], 'c_0101_6' : d['c_0101_0'], 'c_0101_5' : d['c_0101_5'], 'c_0101_4' : d['c_0011_6'], 'c_0101_3' : d['c_0101_15'], 'c_0101_2' : d['c_0101_15'], 'c_0101_1' : d['c_0011_6'], 'c_0101_0' : d['c_0101_0'], 'c_0101_9' : d['c_0101_10'], 'c_0101_8' : d['c_0101_0'], 's_1_16' : d['1'], 's_1_15' : d['1'], 's_1_14' : d['1'], 's_1_13' : d['1'], 's_1_12' : d['1'], 's_1_11' : d['1'], 's_1_10' : negation(d['1']), 'c_0110_9' : d['c_0101_15'], 'c_0110_8' : d['c_0101_15'], 'c_0110_1' : d['c_0101_0'], 'c_0110_0' : d['c_0011_6'], 'c_0110_3' : d['c_0101_0'], 'c_0110_2' : d['c_0101_0'], 'c_0110_5' : d['c_0101_13'], 'c_0110_4' : d['c_0101_11'], 'c_0110_7' : d['c_0101_15'], 'c_1100_8' : d['c_1100_14']})} PY=EVAL=SECTION=ENDS=HERE PRIMARY=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 18 over Rational Field Order: Lexicographical Variables: t, c_0011_0, c_0011_10, c_0011_11, c_0011_12, c_0011_6, c_0101_0, c_0101_10, c_0101_11, c_0101_12, c_0101_13, c_0101_15, c_0101_16, c_0101_5, c_0110_6, c_1001_1, c_1100_10, c_1100_14 Inhomogeneous, Dimension 0, Radical, Prime Size of variety over algebraically closed field: 5 Groebner basis: [ t + 524639001862811/91493819800*c_1100_14^4 + 6775407621534473/365975279200*c_1100_14^3 - 35853803917378607/1463901116800*c_1100_14^2 + 196875353279541273/5855604467200*c_1100_14 - 2157327937341239/182987639600, c_0011_0 - 1, c_0011_10 + 168230/21139*c_1100_14^4 + 1063281/42278*c_1100_14^3 - 6082823/169112*c_1100_14^2 + 32542849/676448*c_1100_14 - 810899/42278, c_0011_11 + 34504/21139*c_1100_14^4 + 108742/21139*c_1100_14^3 - 315733/42278*c_1100_14^2 + 1574131/169112*c_1100_14 - 84115/21139, c_0011_12 + 44554/21139*c_1100_14^4 + 269303/42278*c_1100_14^3 - 1763473/169112*c_1100_14^2 + 9437223/676448*c_1100_14 - 537769/84556, c_0011_6 - 24256/21139*c_1100_14^4 - 77072/21139*c_1100_14^3 + 116076/21139*c_1100_14^2 - 123239/21139*c_1100_14 + 25691/21139, c_0101_0 - 1, c_0101_10 + 56880/21139*c_1100_14^4 + 178948/21139*c_1100_14^3 - 257695/21139*c_1100_14^2 + 1412209/84556*c_1100_14 - 144815/21139, c_0101_11 + 62944/21139*c_1100_14^4 + 198216/21139*c_1100_14^3 - 286714/21139*c_1100_14^2 + 788863/42278*c_1100_14 - 145953/21139, c_0101_12 + 31352/21139*c_1100_14^4 + 105866/21139*c_1100_14^3 - 232467/42278*c_1100_14^2 + 1340933/169112*c_1100_14 - 54297/21139, c_0101_13 + 28440/21139*c_1100_14^4 + 89474/21139*c_1100_14^3 - 257695/42278*c_1100_14^2 + 1581321/169112*c_1100_14 - 82977/21139, c_0101_15 + 77984/21139*c_1100_14^4 + 253144/21139*c_1100_14^3 - 332138/21139*c_1100_14^2 + 894283/42278*c_1100_14 - 161827/21139, c_0101_16 - 8672/21139*c_1100_14^4 - 30232/21139*c_1100_14^3 + 20974/21139*c_1100_14^2 - 117905/42278*c_1100_14 + 22376/21139, c_0101_5 - 34504/21139*c_1100_14^4 - 108742/21139*c_1100_14^3 + 315733/42278*c_1100_14^2 - 1912355/169112*c_1100_14 + 84115/21139, c_0110_6 - 9216/21139*c_1100_14^4 - 22144/21139*c_1100_14^3 + 70652/21139*c_1100_14^2 - 91668/21139*c_1100_14 + 30956/21139, c_1001_1 - 56880/21139*c_1100_14^4 - 178948/21139*c_1100_14^3 + 257695/21139*c_1100_14^2 - 1412209/84556*c_1100_14 + 123676/21139, c_1100_10 + 37536/21139*c_1100_14^4 + 118376/21139*c_1100_14^3 - 172376/21139*c_1100_14^2 + 238595/21139*c_1100_14 - 84684/21139, c_1100_14^5 + 11/4*c_1100_14^4 - 93/16*c_1100_14^3 + 507/64*c_1100_14^2 - 39/8*c_1100_14 + 1 ] ] PRIMARY=DECOMPOSITION=ENDS=HERE CPUTIME : 33.130 Total time: 33.420 seconds, Total memory usage: 320.19MB