Magma V2.19-8 Tue Aug 20 2013 16:08:57 on localhost [Seed = 391547311] Type ? for help. Type -D to quit. ==TRIANGULATION=BEGINS== % Triangulation m213 geometric_solution 4.08549276 oriented_manifold CS_known -0.0000000000000001 1 0 torus 0.000000000000 0.000000000000 5 1 0 2 0 0132 1302 0132 2031 0 0 0 0 0 -1 1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 -1 0 0 1 0 -1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.312767087637 0.571020661062 0 2 3 2 0132 3201 0132 2310 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 -1 0 0 1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.223350900328 1.434572526077 1 3 1 0 3201 1023 2310 0132 0 0 0 0 0 0 1 -1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 1 -1 0 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.223350900328 1.434572526077 2 4 4 1 1023 0132 3201 0132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.263089340846 0.340189235546 3 3 4 4 2310 0132 2031 1302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.369359508325 2.169056657071 ==TRIANGULATION=ENDS== PY=EVAL=SECTION=BEGINS=HERE {'variable_dict' : (lambda d, negation = (lambda x:-x): { 's_3_1' : d['1'], 's_3_3' : d['1'], 's_3_2' : d['1'], 's_3_4' : d['1'], 's_3_0' : negation(d['1']), 's_2_0' : d['1'], 's_2_1' : d['1'], 's_2_2' : d['1'], 's_2_3' : d['1'], 's_2_4' : d['1'], 's_1_4' : d['1'], 's_1_3' : d['1'], 's_1_2' : d['1'], 's_1_1' : d['1'], 's_1_0' : negation(d['1']), 's_0_4' : d['1'], 's_0_2' : d['1'], 's_0_3' : d['1'], 's_0_0' : d['1'], 's_0_1' : d['1'], 'c_1100_4' : d['c_0101_4'], 'c_1100_1' : d['c_0011_2'], 'c_1100_0' : negation(d['c_0011_0']), 'c_1100_3' : d['c_0011_2'], 'c_1100_2' : negation(d['c_0011_0']), 'c_0101_4' : d['c_0101_4'], 'c_0101_3' : d['c_0101_0'], 'c_0101_2' : negation(d['c_0101_0']), 'c_0101_1' : d['c_0101_1'], 'c_0101_0' : d['c_0101_0'], 'c_0011_4' : negation(d['c_0011_2']), 'c_0011_1' : negation(d['c_0011_0']), 'c_0011_0' : d['c_0011_0'], 'c_0011_3' : d['c_0011_2'], 'c_0011_2' : d['c_0011_2'], 'c_1001_4' : d['c_0101_0'], 'c_1001_1' : d['c_0101_0'], 'c_1001_0' : d['c_0101_1'], 'c_1001_3' : negation(d['c_0101_4']), 'c_1001_2' : d['c_0101_0'], 'c_0110_1' : d['c_0101_0'], 'c_0110_0' : d['c_0101_1'], 'c_0110_3' : d['c_0101_1'], 'c_0110_2' : d['c_0101_0'], 'c_0110_4' : negation(d['c_0101_0']), 'c_1010_4' : negation(d['c_0101_4']), 'c_1010_3' : d['c_0101_0'], 'c_1010_2' : d['c_0101_1'], 'c_1010_1' : negation(d['c_0101_0']), 'c_1010_0' : d['c_0011_0']})} PY=EVAL=SECTION=ENDS=HERE PRIMARY=DECOMPOSITION=BEGINS=HERE [ Ideal of Polynomial ring of rank 6 over Rational Field Order: Lexicographical Variables: t, c_0011_0, c_0011_2, c_0101_0, c_0101_1, c_0101_4 Inhomogeneous, Dimension 0, Radical, Prime Size of variety over algebraically closed field: 8 Groebner basis: [ t + 46451/7965*c_0101_4^7 - 241928/7965*c_0101_4^6 - 693877/7965*c_0101_4^5 + 57709/7965*c_0101_4^4 + 250814/1593*c_0101_4^3 + 363593/1593*c_0101_4^2 + 68213/885*c_0101_4 + 207277/7965, c_0011_0 - 1, c_0011_2 - 418/1593*c_0101_4^7 + 2335/1593*c_0101_4^6 + 5435/1593*c_0101_4^5 - 3047/1593*c_0101_4^4 - 10604/1593*c_0101_4^3 - 11924/1593*c_0101_4^2 - 214/531*c_0101_4 - 737/1593, c_0101_0 + 169/1593*c_0101_4^7 - 748/1593*c_0101_4^6 - 3281/1593*c_0101_4^5 - 1288/1593*c_0101_4^4 + 4958/1593*c_0101_4^3 + 9395/1593*c_0101_4^2 + 704/177*c_0101_4 + 1523/1593, c_0101_1 + 925/1593*c_0101_4^7 - 4756/1593*c_0101_4^6 - 14216/1593*c_0101_4^5 + 599/1593*c_0101_4^4 + 26540/1593*c_0101_4^3 + 37100/1593*c_0101_4^2 + 4013/531*c_0101_4 + 3005/1593, c_0101_4^8 - 5*c_0101_4^7 - 16*c_0101_4^6 - 2*c_0101_4^5 + 27*c_0101_4^4 + 45*c_0101_4^3 + 22*c_0101_4^2 + 8*c_0101_4 + 1 ] ] PRIMARY=DECOMPOSITION=ENDS=HERE CPUTIME : 0.010 Total time: 0.210 seconds, Total memory usage: 32.09MB