Find all boundary-unipotent representations (up to conjugacy)
and compute invariants such as (complex) volume, trace field, ...
|
0.E-19 - 0.328986813369645*I 1.88267370443418 E-14 + 0.328986813369648*I -2.02988321281931 + 3.69387680165811 E-16*I 2.02988321281931 + 3.69387680165811 E-16*I |
2.0298832128 |
[[x^2 - x - 1], [x^2 - x + 1]] |
-4.29669320956005 E-16 3.94150857785380 E-15 4.64797471344536 E-15 0.942707362776931 2.78183391239608 |
0.94270736278 |
Retrieving solutions from http://ptolemy.unhyperbolic.org/data/pgl3/OrientableCuspedCensus/04_\ tetrahedra/m032__sl3_c0.magma_out ... Parsing... Retrieving solutions from http://ptolemy.unhyperbolic.org/data/pgl3/OrientableCuspedCensus/04_\ tetrahedra/m032__sl3_c1.magma_out ... Parsing... -12.6558529155326 -9.71673302356478 -9.71673302356477 -5.66041958906225 -4.84455411034372 -4.84455411034372 -3.58170732556836 -3.58170732556836 -2.82812208833079 -2.82812208833079 -2.82812208833079 -2.82812208833078 -2.13410408402112 E-14 -1.40700168529961 E-14 -7.12917138517843 E-15 -6.63951857902967 E-15 -6.19144492619572 E-15 -6.09004491801401 E-15 -5.69282034706964 E-15 -4.75872596536475 E-15 -3.09366247897014 E-15 -2.43934646787514 E-15 -2.43278704473160 E-15 -1.63335057284941 E-15 1.63335057284941 E-15 2.43257020429710 E-15 2.43918383754926 E-15 3.09349984864427 E-15 4.75850912493025 E-15 5.69271192685239 E-15 6.09015333823126 E-15 6.19166176663022 E-15 6.63973541946417 E-15 1.40699084327789 E-14 2.82812208833078 2.82812208833079 2.82812208833079 2.82812208833079 3.58170732556836 3.58170732556836 4.84455411034372 4.84455411034372 5.66041958906225 9.71673302356477 9.71673302356478 12.6558529155326 |
12.655852915532575 |
|
|
|
Ptolemy Variety for m011, N = 2 |
- c_0011_0 * c_0101_1 - c_0011_0^2 - c_0101_1 * c_0101_2 - c_0011_0 * c_0101_1 - c_0011_0^2 - c_0101_1 * c_0101_2 - c_0011_0 * c_0101_1 - c_0101_1^2 + c_0101_2^2 - 1 + c_0011_0 |
[{'c_1001_1': Mod(1, x^3 - x^2 + 1), 'c_1001_0': Mod(-x + 1, x^3 - x^2 + 1), 'c_1001_2': Mod(-x^2 + x, x^3 - x^2 + 1), 'c_0110_1': Mod(-1, x^3 - x^2 + 1), 'c_0110_0': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0110_2': Mod(x^2 - x, x^3 - x^2 + 1), 'c_1010_2': Mod(-x + 1, x^3 - x^2 + 1), 'c_1010_1': Mod(x - 1, x^3 - x^2 + 1), 'c_1010_0': Mod(-x^2 + x, x^3 - x^2 + 1), 'c_1100_1': Mod(x^2 - x, x^3 - x^2 + 1), 'c_1100_0': Mod(-1, x^3 - x^2 + 1), 'c_1100_2': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0101_2': Mod(x - 1, x^3 - x^2 + 1), 'c_0101_1': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0101_0': Mod(-1, x^3 - x^2 + 1), 'c_0011_1': Mod(-1, x^3 - x^2 + 1), 'c_0011_0': Mod(1, x^3 - x^2 + 1), 'c_0011_2': Mod(-1, x^3 - x^2 + 1)}] |
{'c_1001_1': Mod(1, x^3 - x^2 + 1), 'c_1001_0': Mod(-x + 1, x^3 - x^2 + 1), 'c_1001_2': Mod(-x^2 + x, x^3 - x^2 + 1), 'c_0110_1': Mod(-1, x^3 - x^2 + 1), 'c_0110_0': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0110_2': Mod(x^2 - x, x^3 - x^2 + 1), 'c_1010_2': Mod(-x + 1, x^3 - x^2 + 1), 'c_1010_1': Mod(x - 1, x^3 - x^2 + 1), 'c_1010_0': Mod(-x^2 + x, x^3 - x^2 + 1), 'c_1100_1': Mod(x^2 - x, x^3 - x^2 + 1), 'c_1100_0': Mod(-1, x^3 - x^2 + 1), 'c_1100_2': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0101_2': Mod(x - 1, x^3 - x^2 + 1), 'c_0101_1': Mod(x^2 - x, x^3 - x^2 + 1), 'c_0101_0': Mod(-1, x^3 - x^2 + 1), 'c_0011_1': Mod(-1, x^3 - x^2 + 1), 'c_0011_0': Mod(1, x^3 - x^2 + 1), 'c_0011_2': Mod(-1, x^3 - x^2 + 1)} |
{'z_0000_0': Mod(x^2, x^3 - x^2 + 1), 'z_0000_1': Mod(x^2 - x + 1, x^3 - x^2 + 1), 'z_0000_2': Mod(-x + 1, x^3 - x^2 + 1), 'zp_0000_1': Mod(x, x^3 - x^2 + 1), 'zp_0000_0': Mod(x^2 - x + 1, x^3 - x^2 + 1), 'zp_0000_2': Mod(-x^2 + x, x^3 - x^2 + 1), 'zpp_0000_2': Mod(-x^2 + 1, x^3 - x^2 + 1), 'zpp_0000_0': Mod(x, x^3 - x^2 + 1), 'zpp_0000_1': Mod(x^2, x^3 - x^2 + 1)} |
{'z_0000_0': 0.56984029099805326591139995811956864883979743912894022054473107966 + 0.E-77*I, 'z_0000_1': 2.3247179572447460259609088544780973407344040569017333645340150503 + 0.E-76*I, 'z_0000_2': 1.7548776662466927600495088963585286918946066177727931439892839706 + 0.E-76*I, 'zp_0000_1': -0.75487766624669276004950889635852869189460661777279314398928397065 + 0.E-76*I, 'zp_0000_0': 2.3247179572447460259609088544780973407344040569017333645340150503 + 0.E-76*I, 'zp_0000_2': -1.3247179572447460259609088544780973407344040569017333645340150503 + 0.E-76*I, 'zpp_0000_2': 0.43015970900194673408860004188043135116020256087105977945526892034 + 0.E-76*I, 'zpp_0000_0': -0.75487766624669276004950889635852869189460661777279314398928397065 + 0.E-76*I, 'zpp_0000_1': 0.56984029099805326591139995811956864883979743912894022054473107966 + 0.E-77*I} |
[-4.29669320956005 E-16 + 0.725471193740844*I, -0.942707362776931 + 0.459731436553693*I, 0.942707362776931 + 0.459731436553693*I] |
[[-4.29669320956005 E-16 + 0.725471193740844*I, -0.942707362776931 + 0.459731436553693*I, 0.942707362776931 + 0.459731436553693*I]] |
2.7818339124 |
[Ptolemy Variety for m011, N = 2, obstruction_class = 0, Ptolemy Variety for m011, N = 2, obstruction_class = 1] |
[[[-4.29669320956005 E-16 + 0.725471193740844*I, -0.942707362776931 + 0.459731436553693*I, 0.942707362776931 + 0.459731436553693*I]], [[3.94150857785380 E-15 + 0.312682687518267*I, 4.64797471344536 E-15 + 0.680993020093457*I, -2.78183391239608 - 0.496837853805869*I, 2.78183391239608 - 0.496837853805869*I]]] |
[-4.29669320956005 E-16 + 0.725471193740844*I, -0.942707362776931 + 0.459731436553693*I, 0.942707362776931 + 0.459731436553693*I, 3.94150857785380 E-15 + 0.312682687518267*I, 4.64797471344536 E-15 + 0.680993020093457*I, -2.78183391239608 - 0.496837853805869*I, 2.78183391239608 - 0.496837853805869*I] |